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Abstract—Efficient hardware synthesis from high-level logical
specifications is a critical challenge in modern digital system
design. This work focuses on generating non-trivial combinational
logic blocks and Moore machines from logical constraints, lever-
aging an off-the-shelf loop-free bitvector program generator. The
proposed methodology transforms time-dependent specifications
into time-independent representations by encoding temporal
dependencies, such as references to past inputs and outputs, into
the machine state. The state is implemented as a shift register that
retains only the necessary history required by the specification.

Two key combinational blocks are synthesized: one for state
transition logic, computing the next state based on the current
state and inputs, and another for output computation, generating
outputs based solely on the current state. For specifications refer-
encing past outputs, we propose an adjusted architecture where
the output computation is integrated with the state update to
capture the required dependencies. The framework ensures mod-
ularity, enabling efficient synthesis of Moore machines directly
implementable in Hardware Description Languages (HDLs) like
System Verilog.

Index Terms—Hardware Description Language, Moore Ma-
chines, Hardware Synthesis, Temporal Logic, System Verilog

I. INTRODUCTION

In modern digital systems, hardware design often requires
precise implementation of complex combinational and state-
dependent logic. Hardware Description Languages (HDLs)
such as SystemVerilog, Verilog, and VHDL are commonly
used to describe and implement such systems. However,
manually crafting efficient HDL code for intricate logic or
systems involving complex logical constraints can be time-
consuming and error-prone.

Combinational logic forms the backbone of digital systems,
where outputs depend solely on current inputs and predefined
logical relationships. For non-trivial combinational logic, such
as computing arithmetic expressions, signal transformations, or
custom operations, defining accurate and efficient HDL code
is particularly challenging. Tools like program synthesis have
shown promise in automating the generation of such logic
from high-level specifications.

In this work, we aim to leverage an off-the-shelf loop-
free bitvector program generator, such as Brahma [2], to
synthesize non-trivial combinational blocks directly from user-
defined logical specifications. Brahma [2] is well-suited for
generating compact, correct-by-construction programs that
map bitvector inputs to an output based on logical constraints.

However, Brahma operates under certain limitations: it does
not inherently handle time-dependent behavior.

To extend Brahma’s applicability to HDL synthesis, we
introduce a methodology for pre- and post-processing user
specifications:

o Pre-processing: Temporal dependencies, such as refer-
ences to past inputs and outputs, are encoded into a
finite state captured by Moore machine structures. This
transforms the problem into a combinational one by
treating the current state as an extended input.

o Post-processing: The output from Brahma is integrated
into an HDL framework, where combinational logic syn-
thesized by Brahma operates between the pre-computed
state and output.

While this approach is inspired by temporal logic frame-
works like Linear Temporal Logic (LTL), we focus on a
practical subset of specifications that reference a finite number
of past inputs and outputs. By encoding temporal history into
state variables, we convert stateful and temporal problems
into purely combinational ones, allowing Brahma to synthesize
non-trivial combinational logic blocks efficiently.

The contributions of this work are as follows:

1) A methodology for leveraging loop-free bitvector pro-
gram synthesis tools to generate non-trivial combina-
tional blocks from logical specifications.

2) A framework for pre-processing temporal logic speci-
fications, encoding temporal history into state variables
for Moore machine-like structures.

3) Demonstrations of the approach through examples such
as rolling averages and maximum value tracking, show-
casing its ability to handle practical hardware design
problems.

The remainder of this paper is structured as follows. Sec-
tion II provides background on HDLs, combinational logic,
Brahma, and related work. Section III formalizes the problem
and introduces motivating examples. Section IV describes
the methodology, including state encoding and combinational
block generation. Section V presents results and evaluates the
approach. Finally, Sections VI and VII discuss limitations,
future work, and conclude the paper.

II. BACKGROUND AND RELATED WORK

The synthesis of hardware designs from logical specifica-
tions has been extensively studied, with significant contribu-



tions spanning various methodologies, including finite state
machine (FSM) synthesis, logic-based synthesis, and modern
program synthesis frameworks.

A. FSM Synthesis and Moore Machines

Klimowicz et al. [3] proposed methodologies for synthe-
sizing finite state machines by integrating Moore and Mealy
machine models. Their approach emphasized reducing the
number of states while preserving timing constraints, re-
sulting in efficient designs for FPGAs and CPLDs. These
methods form a foundational basis for FSM-based synthesis,
particularly Moore machines, which rely solely on the state
for outputs, ensuring stability and predictability in hardware
implementations.

B. Logical Specifications for Reactive Systems

Bloem et al. [1] introduced techniques for synthesizing
reactive systems using generalized reactivity (GR(1)) logic, a
fragment of linear temporal logic (LTL). Their work focused
on synthesizing modular designs by separating assumptions
about the environment from guarantees about the system.
This structured approach highlights the utility of formal logic
in creating predictable and modular systems. However, such
logic can often lead to overly complex synthesis processes for
certain applications.

C. Loop-Free Program Synthesis

The Brahma framework, introduced by Gulwani et al. [2],
focuses on synthesizing loop-free bitvector programs by reduc-
ing the problem to constraint solving. This approach leverages
SMT solvers to generate efficient combinational circuits and
arithmetic designs, particularly useful for handling modular
libraries of operations. Brahma’s ability to synthesize non-
trivial arithmetic and bitwise logic designs from specifications
closely aligns with our focus on synthesizing arithmetic-
constrained Moore machines.

D. HDL Code Generation and Machine Learning

Recent advancements in HDL code generation have in-
corporated machine learning techniques to automate complex
design processes. Sun et al. [5] explored classification-based
methods to guide HDL generation, leveraging large language
models (LLMs) for combinational and sequential logic tasks.
These methods showcase the potential of Al-assisted design
tools in simplifying hardware synthesis while maintaining
correctness.

E. Bridging LTL and Hardware Design

The translation of LTL specifications into hardware has been
extensively studied. Piterman et al. [4] emphasized symbolic
representation and automata theory to synthesize hardware
from high-level temporal logic. These methods focus on
ensuring the correctness and efficiency of state-based designs
but often require handling complex GR(1)-style specifications.

FE. Contributions of This Work

This work builds on these foundations by focusing on
logical constraints that are less complex than GR(1) logic
but include more intricate arithmetic relationships. The key
contributions of this work are:

o Simplifying temporal dependencies by encoding past
inputs and outputs as state variables in shift registers.

o Leveraging off-the-shelf bitvector program synthesis tools
to generate combinational blocks that compute state tran-
sitions and outputs.

e Producing hardware designs with readable HDL code,
emphasizing clarity and maintainability.

o Bridging high-level logical constraints and low-level
HDL synthesis while enabling arithmetic-constrained
Moore machine synthesis.

By targeting specifications that blend arithmetic complexity
with manageable temporal dependencies, this work offers a
novel approach to synthesizing stateful digital systems while
maintaining simplicity and readability in the resulting code.

III. PROBLEM DEFINITION

A. Program synthesis problem spesification

The goal of this work is to synthesize non-trivial com-
binational logic blocks from high-level logical specifications
that may include dependencies on past inputs or outputs. To
formalize this problem, we begin by defining the notation for
the inputs, outputs, and internal state of the system.

The system’s inputs are represented as a time series of k-bit
vectors, denoted as I(t) = {Io(t),11(t), ..., Ix_1(t)}, where
I;(t) is the value of the ith input signal at discrete time ¢.
The outputs are similarly defined as k-bit vectors, denoted as
O(t), computed at each time step based on the current inputs
and potentially previous inputs and outputs.

The program synthesis problem is defined by a logical
constraint ¢, the inputs f the output O, and a library of
functions £. Formally, the specification ¢gpc. establishes the
relationship between the inputs, outputs, and possibly their
past values. It is expressed as:

Gspec(I(t <T),0(t < T),0(T +1)),

where ¢ < T indicates that the specification may depend on
inputs and outputs up to time 7'. The constraint ¢,pe. can
include references to a finite number of past input values I (t—
n) and output values O(t—n) for n > 0, introducing temporal
dependencies that need to be addressed.

In this formulation, the function library £ is a set of spec-
ifications representing all the bitvector operations permitted
by the target language, in this case, SystemVerilog. This
library defines the operations available for constructing the
desired combinational logic, such as arithmetic, bitwise, and
comparison operations. The full library used can be found in
Table I.



TABLE I
SYSTEMVERILOG OPERATIONS AND THEIR LOGICAL SPECIFICATIONS.

Operation SystemVerilog Syntax Logical Specification
Bitwise AND 0=1I1% I_2; Oli| = I1[i] A I2]2
Bitwise OR 0=1I11] 1I_2; Oli| = I1[i] V I2]¢
Bitwise XOR 0=1_1" 1_2; Oli] = L1 [i] ® L[t
Bitwise NOT 0 “I_1; Oli] = -1 7]
Reduction AND 0= &I_1; O=0L[0|ANT{[1I]A-- N[N -1
Reduction OR 0= |I_1; O=NL[0]VvIi[]l]V---VL1[N -1
Reduction XOR o= "1I_1; 0211[016911 1]@---@[1[1\771]
Shift Left O =1I_1 << N; Oli]| = I [i — N]if ¢ > N, 0 otherwise
Shift Right 0 =1_1 > N; Oli] = I1[i + NJif i + N < size(I1), O otherwise
Arithmetic Addition 0 =1I_1 I_2; O=1+1>
Arithmetic Subtraction o =1I_1 I_2; O=1 -1
Arithmetic Multiplication 0O =1I_1%* I_2; O=1 x1Is
Arithmetic Division o0=1_1/1_2; O=1+1s
Arithmetic Modulo O=1I_1%T1_2; O =1; mod Iz
Less Than 0= (I_1 < I_2); Oz{l’ 11[1<,]2
0, otherwise
Greater Than 0= (I_1 > I_2); O{l7 lf]1>,12
0, otherwise
Switch (If-Then-Else) | 0 = (I_3) 2 I_1 : I_2; 0= {h’ if I # 0
Iz, else

B. Output Format

To simplify the problem, we focus on a specific form of
modules: the implementation of Moore machines. A Moore
machine is a finite state machine where the outputs depend
solely on the current state, not on the inputs. This structure
ensures predictable and stable outputs, making it well-suited
for hardware synthesis.

The program we propose will generate two distinct com-
binational blocks: First, a state transition block, which
computes the next state of the machine S(T" + 1) based on
the current state S(T) and inputs I(T). This part will be
generated algorithmically as described in IV. Secondly, an
output computation block, which computes the outputs of
the machine based solely on the current state, this block will
be generated using a bitvector program synthesiser.

The general structure of the program is illustrated in Fig. 1
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Fig. 1. Architecture of the program

IV. METHODOLOGY
A. New State Computation
The key idea is to eliminate time dependency by storing
past inputs directly in the machine state. This allows the

state to act as a shift register that retains only the necessary
amount of past values for each input or output referenced in

the specification. To compute the exact number of past values
to keep we parse the specification ¢, and for each intpus
and for the output, find the reference to the oldest sample.
Formally, let 7; = max{t € N|I;(T — t) appears in ¢gpec}

. In the simpler case where the specification contains refer-
ences only to past inputs, the new state can be computed using
Algorithm 1.

Algorithm 1 New state computation for storing past inputs

1: Parse ¢,pe. and computing the 7 values
2. fori=0tok—1do
3: if 7, > 0 then

4 Si,O «— I;

5 for j=1to7; —1do
6: S@j — Sz’,j—l

7 end for

8 end if

9: end for

However, if the specification includes references to past
outputs, those outputs must also be incorporated into the state.
This adjustment requires moving the output computation block
alongside the state computation block so that the outputs can
be added to the shift register. As for the intups we note
T, = max{t € N|O(T — t) appears in ¢,..} The updated
architecture reflecting this adjustment is shown in Fig. 2.
The algorithm for this more complex scenario is presented
in Algorithm 2. This algorithm references the new output
computation based on the current state, this commbinational
block is the one generated as described in I'V-B.

B. Output Computation

The output computation determines how the outputs of the
system are derived from the state. The process involves three
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Fig. 2. Modified architecture of the program to store past outputs

Algorithm 2 New state computation

1: Compute 7,
2: run Algorithm 1

3: if 7, > 0 then

4 for j=1to7,—1do
5: Skt1,5 < Skt1,5-1
6: end for

7: end if

main steps: preprocessing the logical specification, solving the
synthesis constraint, and postprocessing the resulting program.

C. Preprocessing

The way Brahma works is by taking a program specifica-
tion defined by:

« a specification f,O,(;SSpec(I_', O)) where T is the set
of input variables, O is the set of output variables, and
gbspec(f, 0) is a logical formula describing the relation
between the output variables and the input variables.

« a library {<E7Oi,¢i(fi70i)> |1 <i < n} representing
the available instructions the program can use.

The function library used will be the one defined in Table I, but
the inputs, outputs, and constraints must first be adapted. To
achieve this, a new program specification is created based on
the problem specification introduced in Section III. The new
logical specification QASSPGC is create by replacing any references
to past inputs or outputs in ¢,p.. With generic variables. For
instance, a reference to O(T —2) in ¢gpe. is replaced with the
variable Si1,2.

Formally, this Brahma-compatible specification can be writ-

ten as : .
I1:=5= LJ LJ Sij
0<i<k 1<j<T;

O:=0

Pspec 1= Dspec Where V0 < i < k,V1 < j < 7, (T — j)
is replaced by S; ;. (1)

a) Solving the Synthesis Constraint: Once preprocessed,
the new specification is passed to the bitvector program gener-
ator brahma. This tool uses SMT solvers to synthesize a com-
binational logic program that satisfies the logical constraints
of ¢spec. The resulting program is correct by construction and
minimizes unnecessary operations.

b) Postprocessing: The output of the synthesis tool is
then translated into SystemVerilog code. Each variable in the
synthesized program is mapped to corresponding shift registers
or state variables. The resulting code is placed inside an
always_comb block in the SystemVerilog template, ensur-
ing that the output is updated dynamically based on the current
state.

For example, given the specification:

O=(L{t—1)AL(t—2)—1

The synthesized logic may produce:
always_comb begin
vl = (Il_reg[l]
o =vl - 1;
end

& Il_reqgl2]);

Then this block is added to the rest of the module to produce
the final code.

V. EXPERIMENTAL RESULTS

The generator has been tested on programs with simple
specifications due to time and computation power constraints.
In this section, we present three example cases to demonstrate
the functionality and modularity of the generated System Ver-
ilog code.

A. Case 1: Simple Logic Specification

For the specification:
Gspec =0(t) = (Lt —1)ANI(t—2)) -1

the generated code is structured into two distinct parts: the
shift register block and the combinational computation block.
Below is the complete generated SystemVerilog code:

module GeneratedModule (
input logic clk,

input logic [31:0] I1,
input logic [31:0] I2,
output logic [31:0] O
)i
logic [31:0] Il_reg [1:1];
always_ff @ (posedge clk) begin
for (int i = 1; 1 > 1; 1 = i -
—~ 1) begin
Il_reg[i] <= Il_regli-1];
end
I1l_reg[l] <= I1;
end
logic [31:0] I2_reg [1:2];
always_ff Q@ (posedge clk) begin
for (int i = 2; 1 > 1; 1 = i -
—~ 1) begin
I2_reg[i] <= I2_regl[i-11;
end

I2_reg[l] <= I2;



end

always_comb begin

vl = (I2_regl[l] & Il_regl2]);
O =v1l - 1;
end
endmodule

This example demonstrates how the generator splits the
specification into shift registers to handle temporal dependen-
cies and a combinational block for logic computation.

B. Case 2: Averager with Past Inputs
For a 4-value rolling average, with the specification:

The examples illustrate that the generator is capable of
producing modular and functional SystemVerilog code for a
variety of use cases, including arithmetic computations, logical
operations, and state tracking. However, the complexity of the
combinational blocks is currently limited by the capabilities of
the underlying bitvector program generator (Brahma). Despite
these limitations, the generated designs are efficient, readable,
and well-suited for practical hardware synthesis tasks.

VI. LIMITATIONS AND FUTURE WORK

While the proposed methodology provides a robust frame-
work for synthesizing combinational logic and Moore ma-
chines from logical specifications, several opportunities for
enhancement remain. This section explores potential directions
for future work.

1
Pspec == O(t) = 1 (Lt -1+ L({t—2)+ L(t—3)+ I (t — B) Expanding Temporal Logic Support

the generator produces the following combinational block:

always_comb begin

vl = Il _reg[l] + Il_regl[2];
v2 = Il _reg[3] + Il_regl4];
v3 = (vl + v2) >> 2;

O = v3

end

The use of bit-shift for division ensures efficient implemen-
tation while maintaining accuracy. This demonstrates how the
generator handles arithmetic operations across multiple past
inputs.

C. Case 3: Minimum Value with Past Outputs

For a design that references past outputs, such as a minimum
tracker:

Gspec = O(t) =min(O(t — 1), I1(t))

the generator includes a new shift register for past outputs, as
shown below:

logic [31:0] O_reg [1:1];
always_ff Q@ (posedge clk)
for (int i = 1;
—~ 1) begin
O_regl[i]
end
O_reg[l] <=
end

begin
i>1; 1 =1 -

<= O_regl[i-1];

I1;

The corresponding combinational block is:

always_comb begin

vl = (O_reg[l] < I1)
v2 = vl ? O_reg[l] I1;
o =v2 ;

end

This case demonstrates the generator’s capability to handle
designs with dependencies on past outputs by integrating
additional state variables.

The current approach is limited to handling specifications
with finite temporal dependencies, where references to past
inputs and outputs are explicitly bounded. To broaden the
applicability of the methodology, future work could focus on
extending support to more expressive temporal logics, such
as generalized reactivity (GR(1)) logic. GR(1) specifications
allow for nested and complex temporal relationships, en-
abling the synthesis of systems with more intricate state-based
behaviors. Incorporating such logic would involve refining
the preprocessing step to efficiently encode nested temporal
dependencies into the machine state.

B. Support for Multiple Outputs

The framework currently targets designs with a single out-
put. However, many practical applications require generating
modules with multiple outputs. Supporting multiple outputs
would involve optimizing the synthesis process to identify
and share common computations among outputs. This en-
hancement could reduce the overall hardware resource utiliza-
tion and improve performance. Additionally, the System Ver-
ilog templates could be extended to accommodate multiple
combinational blocks, one for each output, while preserving
modularity and readability.

C. Automated Specification Translation

An important goal for future work is to improve the
accessibility of the synthesis process by enabling automated
translation of high-level specifications into the required logical
form. This could involve developing user-friendly interfaces
where designers specify desired behaviors in natural language
or high-level temporal logic, which are then automatically
translated into the input format for the synthesis tool. Such
automation would reduce the barrier to entry for non-experts
and streamline the design process.

D. Integration with Formal Verification

While the synthesized designs are correct-by-construction
with respect to the input specification, integrating formal
verification tools would provide an additional layer of assur-
ance. Future work could explore the automatic generation of



formal properties, derived from the original specification, for
verification against the synthesized HDL code. This would
ensure that the resulting designs not only meet functional
requirements but also adhere to safety, liveness, and other
critical correctness properties.

E. Resource and Timing Constraints

To make the framework more practical for hardware im-
plementations, future work could introduce the ability to limit
hardware resources, such as the maximum number of Look-
Up Tables (LUTs), or enforce timing constraints, such as the
maximum critical path length. This could be achieved by
incorporating resource and timing estimates into the synthesis
process and adapting the optimization algorithm to priori-
tize designs that meet these constraints. Such enhancements
would allow designers to balance performance and resource
usage more effectively, particularly for applications targeting
resource-constrained environments like FPGAs.

VII. CONCLUSION

This paper presented a methodology for synthesizing non-
trivial combinational logic and Moore machines directly from
logical specifications. By using an off-the-shelf loop-free
bitvector program generator, we demonstrated how time-
dependent specifications can be transformed into purely com-
binational forms through efficient state encoding. The pro-
posed approach introduces a modular framework where tempo-
ral dependencies, such as past inputs and outputs, are encoded
in shift registers, enabling seamless integration with existing
synthesis tools.

The resulting SystemVerilog code effectively separate state
management from output computation, ensuring both clarity
of the generated hardware descriptions.

While the current framework is limited to finite temporal de-
pendencies and manageable specifications, it lays the ground-
work for future exploration of more complex temporal logic
synthesis. Enhancements such as GR(1)-style specification
handling, optimization of state encoding, and integration with
automated verification tools represent promising directions for
future work.

In conclusion, this work offers a practical solution for
synthesizing stateful digital systems that satisfy a given logical
constrain. By automating the translation of logical specifica-
tions into hardware description languages, this methodology
simplifies the design process, reduces human error, and accel-
erates the development of robust and efficient digital systems.
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