
Optimizing IoT Efficiency: Balancing Power

Consumption and Data Accuracy Through

Adaptive Polling Algorithms

Lounes Kouache, Quentin Roussel

April 2024

Course : GIN206 - Réseaux mobiles et IOT
Teacher : LIM Keunwoo

1

Contents

1 Introduction 3

2 Polling algorithms 3
2.1 Constant interval polling 4
2.2 Average rate of change based polling 4
2.3 Linear regression based polling 5
2.4 Ideal polling . 6

3 Efficiency evaluation 6
3.1 Evaluating the accuracy 7
3.2 Power efficiency . 8

4 Results 8
4.1 Example of polled data 8
4.2 Statistical analysis 10

5 Practical implementation 11

6 Conclusion 12

2

1 Introduction

In the rapidly evolving landscape of Internet of Things (IoT), sen-
sors play an important role in the monitoring and data gathering
for various applications, from environmental monitoring to smart
homes. However, the very act of data acquisition—polling sensor
outputs—poses a significant challenge in terms of energy efficiency.
The conventional polling mechanisms, which often either over-poll
or under-poll, lead to either excessive energy consumption or loss of
crucial data, respectively. Over-polling unnecessarily uses the sen-
sor’s battery, while under-polling risks missing important changes
in the data.

The objective of this work is to explore and establish a method
to optimize the polling rate of IoT sensors that maximizes data
acquisition efficiency while minimizing energy consumption. This
involves developing an adaptive polling algorithm that intelligently
adjusts the frequency of data requests based on the importance and
variability of the information. By refining the polling process, this
approach aims to preserve the sensor’s battery life, enhance the
longevity of the IoT devices, and ensure that critical data is captured
and transmitted with optimal efficiency.

2 Polling algorithms

A polling algorithm in the context of this work is a computational
method designed to determine the optimal times for activating sen-
sors to collect data. This algorithm plays a crucial role in managing
the balance between energy consumption and data acquisition effi-
ciency. Essentially, the algorithm uses a set of predefined or adaptive
rules to decide when a sensor should wake up from a low power state
to measure and transmit data.

The functionality of a polling algorithm revolves around the anal-
ysis of previously collected data to make informed decisions about
future data collection events. By examining past data, the algo-
rithm can identify patterns or trends which inform the frequency
and timing of future polls. The ultimate goal of the algorithm is to
ensure that sensors collect enough data to maintain the quality and
integrity of the information without expending unnecessary energy.

The idea of each algorithm presented is to take previously gath-

3

ered data and output a date, the date at which the next poll need
to happen.

These algorithms also incorporate a parameter, the ”target value
difference,” parameter defines what constitutes a significant change
in sensor data. This threshold is essential as it informs the polling
mechanism about when to activate, based on predicted changes in
data that meet or exceed this set value. By calibrating this param-
eter, the polling algorithm can adapt to specific application needs,
ensuring that sensors collect data only when significant variations
occur.

2.1 Constant interval polling

The first method to be discussed in the context of polling algorithms
is the Constant Interval Polling method. Characterized by its sim-
plicity and predictability, it involves sampling data at fixed, regular
intervals, known as the polling interval, which remains predeter-
mined and unchanged throughout the operation of the IoT system.

In formal terms, if the last value was polled at the date t0, the
next value will be polled at the date

t1 = t0 +∆t (1)

This method will be used as a benchmark for evaluating other
more dynamic polling methods. Its straightforward, unchanging
approach makes it an ideal baseline, allowing for clear compara-
tive analysis against more adaptive strategies that aim to optimize
energy efficiency and data relevance under varying operational con-
ditions.

2.2 Average rate of change based polling

In many IoT applications, the data exhibit a degree of predictability,
often demonstrating periodic behavior on a daily basis. For instance,
an analysis of a temperature dataset may reveal that the absolute
average rate of change tends to follow a distinct pattern throughout
the day, peaking around 10 AM and 6 PM with lower activity levels
in between. This pattern suggests that it is advantageous to sample
more frequently during these peak times and reduce the frequency
at night when temperature variations are minimal.

4

In more formal terms, consider a scenario where we are given a
target temperature difference, denoted as ∆T . At a specific time t0,
a sensor records a temperature T0. Using this information, we aim to
calculate the next polling time, t1. This calculation is based on the
average rate of change of the temperature at t0, represented as δ̄T .
With this rate, we can estimate the time at which the temperature
is expected to change by approximately ∆T using the formula:

t1 = t0 +
∆T

δ̄T

This method requires access to a substantial amount of historical
data to accurately determine δ̄T , ensuring reliable predictions for
future sensor polling.

2.3 Linear regression based polling

Retaining the core concept from the previous method, we adapt it
for situations where either limited historical data is available or the
data does not display periodic behavior in terms of rate of change.
However, real-world IoT systems often exhibit other forms of pre-
dictability, such as rates of change that remain relatively constant
over extended periods. This characteristic can be leveraged to cre-
ate a polling method similar to the average rate of change-based
polling but by estimating the current rate of change using the most
recent data points.

For example, using the last two data points (t−1, T−1) and (t0, T0)
where T−1 ̸= T0, the time for the next poll is calculated as follows:

t1 = t0 +

∣∣∣∣ t−1 − t0
T−1 − T0

∣∣∣∣∆T

However, if T−1 and T0 are equal or very close, the algorithm
could delay the next poll significantly. To address this issue, a max-
imum delay between two polls, ∆tmax, is introduced. Thus, the
formula for determining the next polling time becomes:

t1 = t0 +

{
∆tmax, if T−1 = T0

min(∆tmax,
∣∣∣ t−1−t0
T−1−T0

∣∣∣∆T), otherwise

5

2.4 Ideal polling

For comparative analysis, it’s essential to conceptualize an ideal
polling algorithm that operates with knowledge of future data val-
ues. While this algorithm is not feasible for real-world implemen-
tation due to its requirement for foresight into future conditions, it
serves as a theoretical optimum against which we can benchmark
practical algorithms.

The ideal polling algorithm operates under a simple premise: it
initiates a poll every time the value difference reaches a specified
threshold. This method ensures that data is collected exactly when
needed, without unnecessary frequency or delay, thereby optimizing
both energy usage and data relevance.

In formal terms, the timing for the next data collection is deter-
mined by the following condition:

t1 = min{t > t0, |T (t)− T (t0)| ≥ ∆T}
Here, t0 is the time of the last poll, T (t) is the temperature at

time t, and ∆T is the predetermined threshold for significant tem-
perature change. This equation seeks the minimum time t greater
than t0 at which the absolute difference between the current tem-
perature and the temperature at t0 exceeds ∆T . This ideal model
provides a benchmark for assessing how closely practical algorithms
approximate optimal data collection timing.

3 Efficiency evaluation

In this section, we will evaluate the various polling algorithms by
measuring their power consumption, data accuracy, and the smooth-
ness of data results. Power consumption is assessed by tracking
the average frequency of measurements, reflecting the algorithm’s
impact on battery life. Accuracy is determined by comparing the
differences between sampled data and actual environmental data,
ensuring the algorithm captures meaningful changes without unnec-
essary sampling. Additionally, we will examine the ”smoothness” of
the data results by measuring the differences between consecutive
data points, which helps in understanding how consistently each
algorithm performs over time. This comprehensive evaluation will
identify the most efficient algorithms in balancing energy efficiency,

6

accuracy, and smoothness, making them suitable for diverse IoT
applications.

3.1 Evaluating the accuracy

To evaluate the accuracy of each polling method, we will calculate
the average difference between the actual value at any given time
and the value last sampled by the method. Denote (ti)i∈[0,N] as the
strictly increasing sequence of dates at which values are sampled,
and let f : R → R represent the continuous function that models
the data being sampled. The average error can formally be defined
as:

ε̄ =
1

tN − t0

N−1∑
i=0

(∫ ti+1

ti

|f(t)− f(ti)| dt
)

However, the dataset we are working with consists of a sequence
of discrete points sampled at a high rate, which we will sub-sample
using the methods previously described, rather than a continuous
function. Thus, we need to adapt our definition of error rate accord-
ingly. If we denote (ti)i ∈ [0, N] as the sequence of dates at which
our data points are sampled to form the dataset, and (ti0 , ti1 , . . . , tip)
as the dates at which values are actually polled by the algorithm,
we can define the average error similarly:

Define ϕ(k) for k ∈ [0, N] as:

ϕ(k) = max
j∈[0,p]
ij≤k

ij

With this definition we have tϕ(i) the date of the most recently sam-
pled point, which is the last known value at date ti. The average
error is then:

ε̄ =
1

N + 1

∑
i∈[0,N]

∣∣f(ti)− f(tϕ(i))
∣∣

This adapted measure provides a practical way to quantify the de-
viation between the sampled values and the actual data points in a
discrete setting.

7

3.2 Power efficiency

The power efficiency of each method is gauged by calculating the
average duration between two successive polling events. This du-
ration is inversely proportional to the average power consumption
of the system, meaning that longer intervals between polls indicate
lower power usage.

4 Results

To evaluate the previously described methodologies, we utilize a
dataset comprising temperature records from a greenhouse, collected
daily over a period exceeding four years. The chosen dataset is ex-
emplary for testing due to its inherent daily cyclic behavior, punc-
tuated by rapid temperature fluctuations and prolonged periods of
slow change. It is important to emphasize that the techniques dis-
cussed should not be deployed for applications where data accuracy
is crucial. There is a risk of losing significant information, such as
brief peaks in data that return to baseline before the next data col-
lection point, or constant values that suggest less frequent polling
but may miss important fluctuations. These methods are, however,
appropriate for use with energy-constrained sensors that are not
monitoring critical information, allowing for efficient data manage-
ment without comprehensive data capture.

4.1 Example of polled data

The algorithms were implemented in Python and evaluated using
a dataset comprising 150 data points, equivalent to 37.5 hours of
recorded data. To calculate the average rate of change across the
entire dataset, we first determined the rate of change between each
consecutive data point. Subsequently, these rates were categorized
by the hour of the day, and an average was computed for each hour.
The resulting data is illustrated in Figure 3.

Figure 2 demonstrates that the constant interval and linear regression-
based polling methods fail to capture the rapid temperature fluctu-
ation observed at 4 PM on April 30th. In contrast, the average rate
of change-based method accurately detects this fluctuation. How-
ever, it leads to oversampling on the following day at 12 AM when

8

compared to the other methods.

(a) (b)

Figure 1: (a) Original data: A 37-hour segment of the greenhouse temperature
dataset, showcasing typical daily fluctuations. (b) Optimally sampled data: The
same 37-hour segment using a temperature change threshold of ∆T = 0.5°C for
data collection.

(a) (b) (c)

Figure 2: (a) Data sampled at a constant interval of 150 minutes, demonstrating
the risk of missing significant temperature changes. (b) Data sampled using a
linear regression based method, maintaining a temperature change threshold
of ∆T = 0.5°C. (c) Data sampled based on the average rate of change, with
∆T = 0.5°C.

9

Figure 3: Hourly average absolute rate of change of temperature throughout
the dataset, highlighting time-specific variability and peak change periods.

4.2 Statistical analysis

To quantitatively assess the efficiency of the methods, we apply the
metrics defined in Section 3 to calculate the average error and the
average interval between two polls, adjusting the ∆T parameter.
The resulting data is illustrated in Figure 4, which indicates that
both the linear regression and average rate of change based polling
methods outperform the naive method.

For example, the constant interval polling method requires an
average of 2063 seconds between polls to achieve an average error of
0.5°C, whereas the linear regression method reaches this accuracy
with an average interval of 2560 seconds, and the rate of change
based method does so with an interval of 3051 seconds, compared
to an optimal interval of 4030 seconds. These intervals correspond
to battery life improvements of 124%, 148%, and a maximum theo-
retical gain of 195%, respectively.

It is evident that the average rate of change method consistently
performs better in our scenario; however, it’s important to note
that this method depends on having access to previous data and a
periodic rate of change, unlike the linear regression method, which
does not require such conditions.

10

Figure 4: Comparative efficiency analysis of polling methods based on average
error and polling interval with varied ∆T settings

It should be noted that the dataset used in this analysis contains
samples taken every 900 seconds, which sets a lower limit on the
polling rate. When the calculated time for a poll falls between two
existing samples, the subsequent sample is selected.

5 Practical implementation

In our study, we utilized theoretical values from a dataset to ini-
tially calibrate the polling intervals for real-time implementations,
detailed in Algorithm 1 (linear regression based polling) and Algo-
rithm 2 (hourly average rate of change based polling). These al-
gorithms are designed to dynamically adjust the frequency of data
collection based on historical patterns, thus optimizing energy effi-
ciency.

Adaptable to real-time data processing, these algorithms are in-
tegrated with an API that fetches live sensor data, enabling them to
respond to changing conditions and push updates to a ThingsBoard
API for visualization. The Python code for these algorithms, which
facilitates their deployment in real-time systems and the visualiza-
tion of data trends through ThingsBoard, is available our GitHub
repository.

11

https://github.com/quentinrsl/gin206-iot
https://github.com/quentinrsl/gin206-iot

6 Conclusion

In this work, we have explored various polling algorithms designed to
enhance the efficiency of IoT systems by carefully balancing power
consumption and data accuracy. Our approach combined theoretical
insights with practical implementations to address the crucial trade-
offs inherent in IoT data collection.

Our initial models used theoretical values from a dataset to es-
tablish baseline efficiencies for different polling strategies. These
models helped us understand how variations in data collection fre-
quency could impact energy usage and data integrity, which are
critical for sustainable IoT operations.

We then progressed to real-time implementations, detailed in Al-
gorithm 1 (linear regression based polling) and Algorithm 2 (hourly
average rate of change based polling). These adaptations allowed
the algorithms to interact with live data streams and demonstrated
their potential in practical scenarios such as environmental moni-
toring and smart home infrastructure, as shown with the example
of a temperature sensor in a greenhouse.

12

Algorithm 1 Linear Regression Based Polling Algorithm

1: Initialize: SENSOR API URL as URL to fetch sensor data
2: Initialize: THINGSBOARD API URL as URL to post data to Things-

Board
3: Initialize: TARGET DIFFERENCE as desired temperature change

threshold
4: function GetSensorData
5: Fetch data from SENSOR API URL
6: Extract timestamp and temperature from the data
7: return timestamp, temperature
8: end function
9: function PostToThingsBoard(payload)

10: Set headers to {’Content-Type’: ’application/json’}
11: Post payload to THINGSBOARD API URL with headers
12: return HTTP status code of the post request
13: end function
14: last time, last temp ← GetSensorData
15: while true do
16: current time, current temp ← GetSensorData
17: time diff ← current time - last time
18: temp diff ← current temp - last temp
19: if temp diff = 0 then
20: temp diff ← very small number
21: end if
22: average rate of change ← absolute(temp diff / time diff)
23: next interval ← absolute(TARGET DIFFERENCE / aver-

age rate of change)
24: payload ← {’temperature’: current temp}
25: PostToThingsBoard(payload)
26: last time ← current time
27: last temp ← current temp
28: Wait next interval seconds
29: end while

13

Algorithm 2 Hourly Average Rate of Change Based Polling Algorithm

1: Initialize: SENSOR API URL as URL to fetch sensor data
2: Initialize: THINGSBOARD API URL as URL to post data to Things-

Board
3: Initialize: TARGET DIFFERENCE as desired temperature change

threshold
4: Initialize: HOURLY RATE OF CHANGE as array of average changes per

hour
5: function GetSensorData
6: Fetch data from SENSOR API URL
7: Extract timestamp and temperature from the data
8: return timestamp, temperature
9: end function

10: function PostToThingsBoard(payload)
11: Set headers to {’Content-Type’: ’application/json’}
12: Post payload to THINGSBOARD API URL with headers
13: return HTTP status code of the post request
14: end function
15: while true do
16: current time, current temp ← GetSensorData
17: current hour ← Extract hour from current time
18: rate of change ← HOURLY RATE OF CHANGE [current hour]
19: next interval ← TARGET DIFFERENCE / rate of change
20: payload ← {’temperature’: current temp}
21: PostToThingsBoard(payload)
22: Wait next interval seconds
23: end while

14

	Introduction
	Polling algorithms
	Constant interval polling
	Average rate of change based polling
	Linear regression based polling
	Ideal polling

	Efficiency evaluation
	Evaluating the accuracy
	Power efficiency

	Results
	Example of polled data
	Statistical analysis

	Practical implementation
	Conclusion

