import datetime from analyze import hourly_rate_of_change def sample_every_kth_point(df, k): # Validate the input to ensure k is positive and does not exceed the DataFrame length if k <= 0: raise ValueError("k must be a positive integer.") if k > len(df): raise ValueError("k is greater than the number of rows in the DataFrame.") # Sample every k-th point sampled_df = df.iloc[::k] return sampled_df def optimal_sample(df, threshold_dT=0.5): t0 = df["time"].iloc[0] indices = [0] times = [t0] for i in range(1, len(df)): dT = abs(df["value"].iloc[i] - df["value"].iloc[indices[-1]]) if dT > threshold_dT: times.append(i) indices.append(i) return df.iloc[indices] def sample_reglin(df,max_dT=0.5, max_poll_interval=2 * 3600): indices = [] def get_first_point_after(date): if(df[df['time'] > date].empty): raise ValueError("No point before the date") return df[df['time'] > date].iloc[0] # Get first two points t0 = df["time"].iloc[0] t1 = df["time"].iloc[1] while True: v0 = df[df["time"] == t0]["value"].values[0] v1 = df[df["time"] == t1]["value"].values[0] # Calculate the slope s = abs((v1 - v0) / (t1 - t0).total_seconds()) #add max_dT/s to t1 new_t = t1 + datetime.timedelta(seconds=min(max_dT/s, max_poll_interval)) try: new_t = get_first_point_after(new_t)["time"] indices.append(df[df["time"] == new_t].index[0]) t0 = t1 t1 = new_t except ValueError: break return df.loc[indices] def sample_avg_rate_of_change(df,poll_rate): indices = [0] for i in range(len(df)): current_hour = df["time"].iloc[i].hour if(df["time"].iloc[i] - df["time"].iloc[indices[-1]] > datetime.timedelta(seconds = poll_rate.iloc[current_hour])): indices.append(i) return df.iloc[indices]