début intégration module reconaissance vocale

utilisation de la bdd
This commit is contained in:
Quentin Roussel
2023-03-23 15:41:38 +01:00
parent 2be148a61e
commit 0af05fb361
154 changed files with 137 additions and 114 deletions

View File

@@ -1,18 +1,11 @@
import librosa
import os
import numpy as np
import math
from scipy.io import wavfile
import wave
from scipy.fftpack import fft,dct
import time
from matplotlib.patches import ConnectionPatch
import matplotlib.pyplot as plt
import numpy as np
import scipy.spatial.distance as dist
import pyaudio
import wave
import json
def dp(distmat):
N,M = distmat.shape
# Initialisons the cost matrix
@@ -35,91 +28,29 @@ def dp(distmat):
#enlever les valeurs de l infini
costmat = costmat[1: , 1:]
return (costmat, costmat[-1, -1]/(N+M))
def calculate_mfcc(audio, sr):
# Define parameters for MFCC calculation
n_mfcc = 13
n_fft = 2048
hop_length = 512
fmin = 0
fmax = sr/2
def divsignalaudiobis(signal):
long_signal = 20 # 20 ms
recouvrement = 10 # 10 ms
long_echantillon = long_signal*sr//1000
recouvrement_echantillon = recouvrement*sr//1000
nb_echantillon = int(np.ceil((len(signal) - long_echantillon)/recouvrement_echantillon) + 1)
long_a_completer = recouvrement_echantillon*(nb_echantillon -1) + long_echantillon - len(signal)
if (long_a_completer != 0):
echantillon_data = np.pad(signal,(0,long_a_completer),mode='constant') # on complète le dernier échantillon par des 0
else :
nb_echantillon -= 1
echantillon_data = np.append(echantillon_data[0], echantillon_data[1:])
data = np.zeros((nb_echantillon, long_echantillon))
for i in range(nb_echantillon):
echantillon_i = echantillon_data[i*recouvrement_echantillon : i*recouvrement_echantillon + long_echantillon]
data[i,:] = echantillon_i
return data
def myfft(signal, fe):
n= len(signal)
Te = 1/fe
S = [0 + 0j]*(450)
for l in range(50, 500):
f = l
for i in range (n):
t= Te * i
S[l-50] += signal[i]*np.exp(-2*math.pi*f*t*1j)
S[l-50] = abs(S[l-50])/n
return S
def puissance_spec(signal):
amplitude_fft = np.absolute(signal)
return (amplitude_fft**2)/44100 # long fft = 512
def BankFiltre(rate, puis_spec):
freq_min = 20
freq_max = rate//2
freq_mel_min = 1000*np.log2(1 +freq_min/1000)
freq_mel_max = 1000*np.log2(1+ freq_max/1000)
nb_filtre = 40 # on prend en général 40 filtres
mel_points = np.linspace(freq_mel_min, freq_mel_max, 42)
hz_points = 1000*(2**(mel_points/1000)-1)# on convertit en hz
bankf = np.zeros((nb_filtre, int(np.floor(22050 +1))))
for m in range(1, nb_filtre +1): # pour chaque filtre, on fait :
f_m_min = int(math.floor(hz_points[m-1])) # point de gauche
f_m = int(math.floor(hz_points[m])) # sommet
f_m_max = int(math.floor(hz_points[m+1])) # point de droite
for k in range(f_m_min, f_m):
bankf[m - 1, k] = (k - hz_points[m - 1]) / (hz_points[m] - hz_points[m - 1])
for k in range(f_m, f_m_max):
bankf[m - 1, k] = ((hz_points[m + 1]) - k) / (hz_points[m + 1] - hz_points[m])
filter_bank = np.dot(puis_spec,np.transpose(bankf)) # Produit vectoriel/matriciel #ipdb
filter_bank = np.where(filter_bank == 0, np.finfo(float).eps, filter_bank) # attention à 0 dans le log.
return filter_bank
def mfcc(signal, rate):
data = divsignalaudiobis(signal)
data_fft = np.fft.rfft(data, 44100)
data_puiss = puissance_spec(data_fft)
data_filtre = BankFiltre(rate, data_puiss)
pre_mfcc = np.log(data_filtre)
mfcc = dct(pre_mfcc, type=2, axis=1, norm="ortho")[:, 0 : 13] # on ne garde que les 13 premiers
#return mfcc
return mfcc
# Calculate MFCCs
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=n_mfcc, n_fft=n_fft, hop_length=hop_length, fmin=fmin, fmax=fmax)
return mfccs.T
def calculate_dtw_cost(mfccs_query , mfccs_train):
distmat = dist.cdist(mfccs_query, mfccs_train,"cosine")
costmat,mincost = dp(distmat)
return mincost
def recognize_speech(audio_query, audio_train_list, sr):#sr frequence d echantillonnage
# Calculate MFCCs for query audio
mfccs_query = mfcc(audio_query, sr)
mfccs_query = calculate_mfcc(audio_query, sr)
# Calculate DTW cost for each audio in training data
dtw_costs = []
for audio_train in audio_train_list:
mfccs_train = mfcc(audio_train, sr)
mfccs_train = calculate_mfcc(audio_train, sr)
mincost = calculate_dtw_cost(mfccs_query, mfccs_train)
dtw_costs.append(mincost)
@@ -129,8 +60,6 @@ def recognize_speech(audio_query, audio_train_list, sr):#sr frequence d echantil
# Return recognized word
return index
# Example usage
def record_audio(filename, duration, sr):
chunk = 1024
sample_format = pyaudio.paInt16
@@ -159,6 +88,7 @@ def record_audio(filename, duration, sr):
p.terminate()
print("Enregistrement terminé")
wf = wave.open(filename, "wb")
@@ -181,13 +111,27 @@ def coupe_silence(signal):
else :
p = p+1
def init_database():
data_dir = "audio_data/"
words = []
files = []
for word in os.listdir(data_dir):
if not os.path.isfile(os.path.join(data_dir, word)):
for file in os.listdir(os.path.join(data_dir,word)):
if os.path.isfile(os.path.join(data_dir, word,file)):
print(word,os.path.join(data_dir, word,file))
words.append(word)
files.append(os.path.join(data_dir, word,file))
return words,files
def get_word_metadata(word):
with open("audio_data/metadata.json") as f:
data = json.loads(f.read())
return data[word]
#Todo : detecte si pas de note donnée
def get_grade():
######## TEST DEBUG ########
time.sleep(6)
return 5
return 4
sr = 44100 # fréquence d'échantillonnage
duration = 6 # durée d'enregistrement en secondes
filename = "recording" # nom du fichier à enregistrer
@@ -195,14 +139,8 @@ def get_grade():
record_audio(filename, duration, sr)
audio_query, sr = librosa.load(f'{filename}.wav', sr=sr)
coupe_silence(audio_query)
training_file_names = []
for path in os.listdir(data_dir):
if os.path.isfile(os.path.join(data_dir, path)):
training_file_names.append(data_dir + path)
print(training_file_names)
audio_train_list = [librosa.load(file, sr=sr)[0] for file in training_file_names]
words, files = init_database()
audio_train_list = [librosa.load(file, sr=sr)[0] for file in files]
recognized_word_index = recognize_speech(audio_query, audio_train_list, sr)
print(f'Recognized word: {recognized_word_index}')
return recognized_word_index
print(get_grade())
recognized_word = words[recognized_word_index]
return get_word_metadata(recognized_word)