mirror of
https://git.roussel.pro/telecom-paris/pact.git
synced 2026-02-09 02:20:17 +01:00
restructuration du backend
préparation de l'intégration des modules suivants
This commit is contained in:
@@ -1,98 +0,0 @@
|
|||||||
import cv2
|
|
||||||
import mediapipe as mp
|
|
||||||
mp_drawing = mp.solutions.drawing_utils
|
|
||||||
mp_drawing_styles = mp.solutions.drawing_styles
|
|
||||||
mp_hands = mp.solutions.hands
|
|
||||||
|
|
||||||
def prodScalaire(V1,V2):
|
|
||||||
return (V1[0]*V2[0]+V1[1]*V2[1])/((V1[0]**2+V1[1]**2)**(1/2)*(V2[0]**2+V2[1]**2)**(1/2)) #produit scalaire normalisé
|
|
||||||
|
|
||||||
# initialisation de la caméra
|
|
||||||
cap = cv2.VideoCapture(0)
|
|
||||||
|
|
||||||
# initialisation de Mediapipe Hands
|
|
||||||
with mp_hands.Hands( static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5, min_tracking_confidence=0.5) as hands:
|
|
||||||
|
|
||||||
while cap.isOpened():
|
|
||||||
|
|
||||||
# lecture de la vidéo
|
|
||||||
ret, frame = cap.read()
|
|
||||||
|
|
||||||
# conversion de l'image en RGB
|
|
||||||
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
||||||
|
|
||||||
# détection des mains
|
|
||||||
results = hands.process(image)
|
|
||||||
|
|
||||||
# Draw the hand annotations on the image.
|
|
||||||
image.flags.writeable = True
|
|
||||||
if results.multi_hand_landmarks:
|
|
||||||
for hand_landmarks in results.multi_hand_landmarks:
|
|
||||||
mp_drawing.draw_landmarks(
|
|
||||||
image,
|
|
||||||
hand_landmarks,
|
|
||||||
mp_hands.HAND_CONNECTIONS,
|
|
||||||
mp_drawing_styles.get_default_hand_landmarks_style(),
|
|
||||||
mp_drawing_styles.get_default_hand_connections_style())
|
|
||||||
|
|
||||||
# détection du nombre de doigts levés
|
|
||||||
hand_landmarks = [0, 0]
|
|
||||||
finger_count = 0
|
|
||||||
if len(results.multi_hand_landmarks) >0 :
|
|
||||||
hand_landmarks[0] = results.multi_hand_landmarks[0]
|
|
||||||
V0= [hand_landmarks[0].landmark[2].x - hand_landmarks[0].landmark[0].x, hand_landmarks[0].landmark[2].y - hand_landmarks[0].landmark[0].y]
|
|
||||||
V1= [hand_landmarks[0].landmark[4].x - hand_landmarks[0].landmark[2].x, hand_landmarks[0].landmark[4].y - hand_landmarks[0].landmark[2].y]
|
|
||||||
if prodScalaire(V0,V1) > 0.905135675:
|
|
||||||
finger_count += 1
|
|
||||||
V0= [hand_landmarks[0].landmark[8].x - hand_landmarks[0].landmark[6].x, hand_landmarks[0].landmark[8].y - hand_landmarks[0].landmark[6].y]
|
|
||||||
V1= [hand_landmarks[0].landmark[6].x - hand_landmarks[0].landmark[0].x, hand_landmarks[0].landmark[6].y - hand_landmarks[0].landmark[0].y]
|
|
||||||
if prodScalaire(V0,V1) > 0:
|
|
||||||
finger_count += 1
|
|
||||||
V0= [hand_landmarks[0].landmark[12].x - hand_landmarks[0].landmark[10].x, hand_landmarks[0].landmark[12].y - hand_landmarks[0].landmark[10].y]
|
|
||||||
V1= [hand_landmarks[0].landmark[10].x - hand_landmarks[0].landmark[0].x, hand_landmarks[0].landmark[10].y - hand_landmarks[0].landmark[0].y]
|
|
||||||
if prodScalaire(V0,V1) > 0:
|
|
||||||
finger_count += 1
|
|
||||||
V0= [hand_landmarks[0].landmark[20].x - hand_landmarks[0].landmark[18].x, hand_landmarks[0].landmark[20].y - hand_landmarks[0].landmark[18].y]
|
|
||||||
V1= [hand_landmarks[0].landmark[18].x - hand_landmarks[0].landmark[0].x, hand_landmarks[0].landmark[18].y - hand_landmarks[0].landmark[0].y]
|
|
||||||
if prodScalaire(V0,V1) > 0:
|
|
||||||
finger_count += 1
|
|
||||||
V0= [hand_landmarks[0].landmark[16].x - hand_landmarks[0].landmark[14].x, hand_landmarks[0].landmark[16].y - hand_landmarks[0].landmark[14].y]
|
|
||||||
V1= [hand_landmarks[0].landmark[14].x - hand_landmarks[0].landmark[0].x, hand_landmarks[0].landmark[14].y - hand_landmarks[0].landmark[0].y]
|
|
||||||
if prodScalaire(V0,V1) > 0:
|
|
||||||
finger_count += 1
|
|
||||||
|
|
||||||
if len(results.multi_hand_landmarks) >1 :
|
|
||||||
hand_landmarks[1] = results.multi_hand_landmarks[1]
|
|
||||||
V0= [hand_landmarks[1].landmark[2].x - hand_landmarks[1].landmark[0].x, hand_landmarks[1].landmark[2].y - hand_landmarks[1].landmark[0].y]
|
|
||||||
V1= [hand_landmarks[1].landmark[4].x - hand_landmarks[1].landmark[2].x, hand_landmarks[1].landmark[4].y - hand_landmarks[1].landmark[2].y]
|
|
||||||
if prodScalaire(V0,V1) > 0.905135675:
|
|
||||||
finger_count += 1
|
|
||||||
V0= [hand_landmarks[1].landmark[8].x - hand_landmarks[1].landmark[6].x, hand_landmarks[1].landmark[8].y - hand_landmarks[1].landmark[6].y]
|
|
||||||
V1= [hand_landmarks[1].landmark[6].x - hand_landmarks[1].landmark[0].x, hand_landmarks[1].landmark[6].y - hand_landmarks[1].landmark[0].y]
|
|
||||||
if prodScalaire(V0,V1) > 0:
|
|
||||||
finger_count += 1
|
|
||||||
V0= [hand_landmarks[1].landmark[12].x - hand_landmarks[1].landmark[10].x, hand_landmarks[1].landmark[12].y - hand_landmarks[1].landmark[10].y]
|
|
||||||
V1= [hand_landmarks[1].landmark[10].x - hand_landmarks[1].landmark[0].x, hand_landmarks[1].landmark[10].y - hand_landmarks[1].landmark[0].y]
|
|
||||||
if prodScalaire(V0,V1) > 0:
|
|
||||||
finger_count += 1
|
|
||||||
V0= [hand_landmarks[1].landmark[20].x - hand_landmarks[1].landmark[18].x, hand_landmarks[1].landmark[20].y - hand_landmarks[1].landmark[18].y]
|
|
||||||
V1= [hand_landmarks[1].landmark[18].x - hand_landmarks[1].landmark[0].x, hand_landmarks[1].landmark[18].y - hand_landmarks[1].landmark[0].y]
|
|
||||||
if prodScalaire(V0,V1) > 0:
|
|
||||||
finger_count += 1
|
|
||||||
V0= [hand_landmarks[1].landmark[16].x - hand_landmarks[1].landmark[14].x, hand_landmarks[1].landmark[16].y - hand_landmarks[1].landmark[14].y]
|
|
||||||
V1= [hand_landmarks[1].landmark[14].x - hand_landmarks[1].landmark[0].x, hand_landmarks[1].landmark[14].y - hand_landmarks[1].landmark[0].y]
|
|
||||||
if prodScalaire(V0,V1) > 0:
|
|
||||||
finger_count += 1
|
|
||||||
|
|
||||||
# affichage du nombre de doigts levés
|
|
||||||
cv2.putText(image, f"Finger count: {finger_count}", (10, 50),
|
|
||||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
||||||
|
|
||||||
# affichage de la vidéo
|
|
||||||
cv2.imshow('Video', cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
|
|
||||||
if cv2.waitKey(10) & 0xFF == ord('q'):
|
|
||||||
break
|
|
||||||
|
|
||||||
# libération de la caméra et des ressources
|
|
||||||
cap.release()
|
|
||||||
cv2.destroyAllWindows()
|
|
||||||
@@ -1,29 +0,0 @@
|
|||||||
import requests
|
|
||||||
#Exemple ajout d'un commentaire depuis la borne (site ou geste)
|
|
||||||
avis = {
|
|
||||||
"note": 8,
|
|
||||||
"source": "borne",
|
|
||||||
#Optionel
|
|
||||||
"auteur_age": 20,
|
|
||||||
"notes_autre": '{"proprete":8,"calme":10}',
|
|
||||||
"auteur_sexe": 'f',
|
|
||||||
"commentaire": "Commentaire"
|
|
||||||
}
|
|
||||||
|
|
||||||
res = requests.post("http://localhost:8080/add_review", data=avis)
|
|
||||||
# print(res.text)
|
|
||||||
|
|
||||||
#Exemple ajout d'un commentaire trouvé sur les réseaux sociaux
|
|
||||||
avis = {
|
|
||||||
"auteur_nom": "michel",
|
|
||||||
"source": "instagram",
|
|
||||||
"note": 8,
|
|
||||||
"date": "2022-12-24",
|
|
||||||
#Optionel
|
|
||||||
"commentaire": "J'ai beaucoup aimé !",
|
|
||||||
"lien": "https://instagram.com/si_insta_avait_des_liens_vers_des_commentaires_faudrait_le_mettre_ici",
|
|
||||||
"auteur_lien": "https://instagram.com/michel",
|
|
||||||
}
|
|
||||||
|
|
||||||
# res = requests.post("http://localhost:8080/add_social_review", data=avis)
|
|
||||||
print(res.text)
|
|
||||||
84
code/backend_reconnaissance/hand_detector.py
Normal file
84
code/backend_reconnaissance/hand_detector.py
Normal file
@@ -0,0 +1,84 @@
|
|||||||
|
import cv2
|
||||||
|
import mediapipe as mp
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class HandDetector():
|
||||||
|
def __init__(self):
|
||||||
|
self.mp_drawing = mp.solutions.drawing_utils
|
||||||
|
self.mp_drawing_styles = mp.solutions.drawing_styles
|
||||||
|
self.mp_hands = mp.solutions.hands
|
||||||
|
self.cap = cv2.VideoCapture(0)
|
||||||
|
self.hands = self.mp_hands.Hands(
|
||||||
|
model_complexity=0,
|
||||||
|
min_detection_confidence=0.5,
|
||||||
|
min_tracking_confidence=0.5)
|
||||||
|
#Paramètres
|
||||||
|
self.BUFFER_LENGTH = 30
|
||||||
|
self.DETECTION_THRESHOLD = 3/4
|
||||||
|
|
||||||
|
self.resultBuffer = []
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def reconnaissancePouce(self,handLandmarks):
|
||||||
|
etatDuPouce=["neutre","thumbs_down","thumbs_up"]
|
||||||
|
i=0
|
||||||
|
j=0
|
||||||
|
for cpt in range (0,4):
|
||||||
|
V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]]
|
||||||
|
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]]
|
||||||
|
j=np.dot(V1,V2)
|
||||||
|
if (j>0):
|
||||||
|
return etatDuPouce[0]
|
||||||
|
V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]]
|
||||||
|
V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]]
|
||||||
|
if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])):
|
||||||
|
i=1
|
||||||
|
elif(np.dot(V1,V2)>0 and handLandmarks[4][1]<handLandmarks[2][1]):
|
||||||
|
i=2
|
||||||
|
return etatDuPouce[i]
|
||||||
|
|
||||||
|
|
||||||
|
def detect(self):
|
||||||
|
if self.cap.isOpened():
|
||||||
|
success, image = self.cap.read()
|
||||||
|
if not success:
|
||||||
|
print("Ignoring empty camera frame.")
|
||||||
|
# If loading a video, use 'break' instead of 'continue'.
|
||||||
|
return False
|
||||||
|
|
||||||
|
# To improve performance, optionally mark the image as not writeable to
|
||||||
|
# pass by reference.
|
||||||
|
image.flags.writeable = False
|
||||||
|
results = self.hands.process(image)
|
||||||
|
# print(results)
|
||||||
|
handLandmarks = []
|
||||||
|
if results.multi_hand_landmarks:
|
||||||
|
for hand_landmarks in results.multi_hand_landmarks:
|
||||||
|
# Fill list with x and y positions of each landmark
|
||||||
|
for landmarks in hand_landmarks.landmark:
|
||||||
|
handLandmarks.append([landmarks.x, landmarks.y])
|
||||||
|
|
||||||
|
thumbState = self.reconnaissancePouce(handLandmarks)
|
||||||
|
|
||||||
|
self.resultBuffer.append(thumbState)
|
||||||
|
if(len(self.resultBuffer) > self.BUFFER_LENGTH):
|
||||||
|
self.resultBuffer.pop(0)
|
||||||
|
|
||||||
|
thumbsUpCount = sum(map(lambda x : x == "thumbs_up", self.resultBuffer))
|
||||||
|
thumbsDownCount = sum(map(lambda x : x == "thumbs_down", self.resultBuffer))
|
||||||
|
|
||||||
|
print(thumbsUpCount,thumbsDownCount)
|
||||||
|
|
||||||
|
if(thumbsUpCount > self.DETECTION_THRESHOLD * self.BUFFER_LENGTH):
|
||||||
|
result = "thumbs_up"
|
||||||
|
elif(thumbsDownCount > self.DETECTION_THRESHOLD * self.BUFFER_LENGTH):
|
||||||
|
result = "thumbs_down"
|
||||||
|
else:
|
||||||
|
result = False
|
||||||
|
|
||||||
|
if(thumbState != "neutre"):
|
||||||
|
return thumbState, handLandmarks[9], np.linalg.norm(np.array(handLandmarks[9]) - np.array(handLandmarks[0])), result
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
@@ -1,78 +0,0 @@
|
|||||||
import cv2
|
|
||||||
import mediapipe as mp
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
mp_drawing = mp.solutions.drawing_utils
|
|
||||||
mp_drawing_styles = mp.solutions.drawing_styles
|
|
||||||
mp_hands = mp.solutions.hands
|
|
||||||
cap = cv2.VideoCapture(0)
|
|
||||||
hands = mp_hands.Hands(
|
|
||||||
model_complexity=0,
|
|
||||||
min_detection_confidence=0.5,
|
|
||||||
min_tracking_confidence=0.5)
|
|
||||||
BUFFER_LENGTH = 30
|
|
||||||
TH_FRACTION = 3/4
|
|
||||||
resultBuffer = []
|
|
||||||
|
|
||||||
def reconnaissancePouce(handLandmarks):
|
|
||||||
etatDuPouce=["neutre","thumbs_down","thumbs_up"]
|
|
||||||
i=0
|
|
||||||
j=0
|
|
||||||
for cpt in range (0,4):
|
|
||||||
V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]]
|
|
||||||
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]]
|
|
||||||
j=np.dot(V1,V2)
|
|
||||||
if (j>0):
|
|
||||||
return etatDuPouce[0]
|
|
||||||
V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]]
|
|
||||||
V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]]
|
|
||||||
if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])):
|
|
||||||
i=1
|
|
||||||
elif(np.dot(V1,V2)>0 and handLandmarks[4][1]<handLandmarks[2][1]):
|
|
||||||
i=2
|
|
||||||
return etatDuPouce[i]
|
|
||||||
|
|
||||||
|
|
||||||
def getThumbState():
|
|
||||||
if cap.isOpened():
|
|
||||||
success, image = cap.read()
|
|
||||||
if not success:
|
|
||||||
print("Ignoring empty camera frame.")
|
|
||||||
# If loading a video, use 'break' instead of 'continue'.
|
|
||||||
return False
|
|
||||||
|
|
||||||
# To improve performance, optionally mark the image as not writeable to
|
|
||||||
# pass by reference.
|
|
||||||
image.flags.writeable = False
|
|
||||||
results = hands.process(image)
|
|
||||||
# print(results)
|
|
||||||
handLandmarks = []
|
|
||||||
if results.multi_hand_landmarks:
|
|
||||||
for hand_landmarks in results.multi_hand_landmarks:
|
|
||||||
# Fill list with x and y positions of each landmark
|
|
||||||
for landmarks in hand_landmarks.landmark:
|
|
||||||
handLandmarks.append([landmarks.x, landmarks.y])
|
|
||||||
|
|
||||||
thumbState = reconnaissancePouce(handLandmarks)
|
|
||||||
|
|
||||||
resultBuffer.append(thumbState)
|
|
||||||
if(len(resultBuffer) > BUFFER_LENGTH):
|
|
||||||
resultBuffer.pop(0)
|
|
||||||
|
|
||||||
thumbsUpCount = sum(map(lambda x : x == "thumbs_up", resultBuffer))
|
|
||||||
thumbsDownCount = sum(map(lambda x : x == "thumbs_down", resultBuffer))
|
|
||||||
|
|
||||||
print(thumbsUpCount,thumbsDownCount)
|
|
||||||
|
|
||||||
if(thumbsUpCount > TH_FRACTION * BUFFER_LENGTH):
|
|
||||||
result = "thumbs_up"
|
|
||||||
elif(thumbsDownCount > TH_FRACTION * BUFFER_LENGTH):
|
|
||||||
result = "thumbs_down"
|
|
||||||
else:
|
|
||||||
result = False
|
|
||||||
|
|
||||||
if(thumbState != "neutre"):
|
|
||||||
return thumbState, handLandmarks[9], np.linalg.norm(np.array(handLandmarks[9]) - np.array(handLandmarks[0])), result
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
@@ -1,45 +1,5 @@
|
|||||||
import asyncio
|
from manager import Manager
|
||||||
import json
|
if __name__ == "__main__":
|
||||||
import math
|
print("backend started")
|
||||||
import websockets
|
m = Manager()
|
||||||
import random
|
m.loop()
|
||||||
import os
|
|
||||||
import time
|
|
||||||
from hands import getThumbState
|
|
||||||
|
|
||||||
|
|
||||||
class WebsocketServer:
|
|
||||||
def __init__(self,getEffects,port=os.getenv("PORT"),host=os.getenv("HOST")) -> None:
|
|
||||||
self.thumbResult = None
|
|
||||||
self.state = 0
|
|
||||||
self.host = host
|
|
||||||
self.port = port
|
|
||||||
self.getEffects = getEffects
|
|
||||||
|
|
||||||
async def run(self):
|
|
||||||
async with websockets.serve(self.handler, self.host, self.port):
|
|
||||||
await asyncio.Future()
|
|
||||||
|
|
||||||
|
|
||||||
async def handler(self,websocket):
|
|
||||||
while True:
|
|
||||||
if(self.state == 0):
|
|
||||||
messages, result = self.getEffects()
|
|
||||||
if(messages != False):
|
|
||||||
if(result == False):
|
|
||||||
await websocket.send(json.dumps(messages))
|
|
||||||
else:
|
|
||||||
self.thumbResult = result
|
|
||||||
self.state = 1
|
|
||||||
await websocket.send('{"type":"state","state":2}')
|
|
||||||
|
|
||||||
def getEffects():
|
|
||||||
res = getThumbState()
|
|
||||||
if(res != False):
|
|
||||||
state, coords, size, result = res
|
|
||||||
return {"type": "effects", "effects": [{"type": state, "x":coords[0], "y": coords[1], "width": size, "height": size}]}, result
|
|
||||||
else:
|
|
||||||
return False,False
|
|
||||||
|
|
||||||
server = WebsocketServer(getEffects)
|
|
||||||
asyncio.run(server.run())
|
|
||||||
44
code/backend_reconnaissance/manager.py
Normal file
44
code/backend_reconnaissance/manager.py
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
from hand_detector import HandDetector
|
||||||
|
from network import WebsocketServer
|
||||||
|
import time
|
||||||
|
|
||||||
|
class Manager():
|
||||||
|
def __init__(self):
|
||||||
|
self.state = 0
|
||||||
|
self.avis = {
|
||||||
|
"note": None,
|
||||||
|
"commentaire": None,
|
||||||
|
"notes_autres": {}
|
||||||
|
}
|
||||||
|
self.server = WebsocketServer(None)
|
||||||
|
self.server.start()
|
||||||
|
self.handDetector = HandDetector()
|
||||||
|
print("Backend ready")
|
||||||
|
|
||||||
|
def loop(self):
|
||||||
|
while(True):
|
||||||
|
if(self.state == 0):
|
||||||
|
self.sleep()
|
||||||
|
if(self.state == 1):
|
||||||
|
self.camera()
|
||||||
|
|
||||||
|
time.sleep(0.01)
|
||||||
|
|
||||||
|
def sleep(self):
|
||||||
|
res = self.handDetector.detect()
|
||||||
|
if(res != False):
|
||||||
|
self.state = 1
|
||||||
|
self.server.sendMessage({"type": "state", "state": 1})
|
||||||
|
|
||||||
|
def camera(self):
|
||||||
|
res = self.handDetector.detect()
|
||||||
|
if(res != False):
|
||||||
|
state, coords, size, finalDecision = res
|
||||||
|
self.server.sendMessage({"type": "effects", "effects": [{"type": state, "x":coords[0], "y": coords[1], "width": size, "height": size}]})
|
||||||
|
if(finalDecision != False):
|
||||||
|
self.avis["note"] = 10 if finalDecision == "thumbs_up" else 0
|
||||||
|
self.state = 2
|
||||||
|
self.server.sendMessage({"type": "state", "state": 2})
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
31
code/backend_reconnaissance/network.py
Normal file
31
code/backend_reconnaissance/network.py
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
import asyncio
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import threading
|
||||||
|
import websockets
|
||||||
|
|
||||||
|
class WebsocketServer(threading.Thread):
|
||||||
|
def __init__(self, onMessage, port=os.getenv("PORT"), host=os.getenv("HOST")):
|
||||||
|
threading.Thread.__init__(self)
|
||||||
|
self.host = host
|
||||||
|
self.port = port
|
||||||
|
self.messageQueue = []
|
||||||
|
self.onMessage = onMessage
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
print("server thread started")
|
||||||
|
asyncio.run(self.runServer())
|
||||||
|
|
||||||
|
async def runServer(self):
|
||||||
|
async with websockets.serve(self.handler, self.host, self.port):
|
||||||
|
await asyncio.Future()
|
||||||
|
|
||||||
|
async def handler(self,websocket):
|
||||||
|
while True:
|
||||||
|
for msg in self.messageQueue:
|
||||||
|
await websocket.send(json.dumps(msg))
|
||||||
|
self.messageQueue.pop(0)
|
||||||
|
await asyncio.sleep(0.01)
|
||||||
|
|
||||||
|
def sendMessage(self,message):
|
||||||
|
self.messageQueue.append(message)
|
||||||
@@ -1,88 +0,0 @@
|
|||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
import mediapipe as mp
|
|
||||||
mp_drawing = mp.solutions.drawing_utils
|
|
||||||
mp_drawing_styles = mp.solutions.drawing_styles
|
|
||||||
mp_hands = mp.solutions.hands
|
|
||||||
|
|
||||||
def prodScalaire(V1,V2):
|
|
||||||
return V1[0]*V2[0]+V1[1]*V2[1]
|
|
||||||
|
|
||||||
def reconnaissancePouce(handLandmarks):
|
|
||||||
etatDuPouce=["neutre","baissé","levé"]
|
|
||||||
i=0
|
|
||||||
j=0
|
|
||||||
for cpt in range (0,4):
|
|
||||||
V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]]
|
|
||||||
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]]
|
|
||||||
j=np.dot(V1,V2)
|
|
||||||
if (j>0):
|
|
||||||
return etatDuPouce[0]
|
|
||||||
V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]]
|
|
||||||
V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]]
|
|
||||||
if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])):
|
|
||||||
i=1
|
|
||||||
elif(np.dot(V1,V2)>0 and handLandmarks[4][1]<handLandmarks[2][1]):
|
|
||||||
i=2
|
|
||||||
return etatDuPouce[i]
|
|
||||||
|
|
||||||
|
|
||||||
cap = cv2.VideoCapture(0)
|
|
||||||
with mp_hands.Hands(
|
|
||||||
model_complexity=0,
|
|
||||||
min_detection_confidence=0.5,
|
|
||||||
min_tracking_confidence=0.5) as hands:
|
|
||||||
while cap.isOpened():
|
|
||||||
success, image = cap.read()
|
|
||||||
if not success:
|
|
||||||
print("Ignoring empty camera frame.")
|
|
||||||
# If loading a video, use 'break' instead of 'continue'.
|
|
||||||
continue
|
|
||||||
|
|
||||||
# To improve performance, optionally mark the image as not writeable to
|
|
||||||
# pass by reference.
|
|
||||||
image.flags.writeable = False
|
|
||||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
||||||
results = hands.process(image)
|
|
||||||
|
|
||||||
# Draw the hand annotations on the image.
|
|
||||||
image.flags.writeable = True
|
|
||||||
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
|
||||||
if results.multi_hand_landmarks:
|
|
||||||
for hand_landmarks in results.multi_hand_landmarks:
|
|
||||||
mp_drawing.draw_landmarks(
|
|
||||||
image,
|
|
||||||
hand_landmarks,
|
|
||||||
mp_hands.HAND_CONNECTIONS,
|
|
||||||
mp_drawing_styles.get_default_hand_landmarks_style(),
|
|
||||||
mp_drawing_styles.get_default_hand_connections_style())
|
|
||||||
|
|
||||||
# Set variable to keep landmarks positions (x and y)
|
|
||||||
handLandmarks = []
|
|
||||||
if results.multi_hand_landmarks:
|
|
||||||
for hand_landmarks in results.multi_hand_landmarks:
|
|
||||||
# Fill list with x and y positions of each landmark
|
|
||||||
for landmarks in hand_landmarks.landmark:
|
|
||||||
handLandmarks.append([landmarks.x, landmarks.y])
|
|
||||||
|
|
||||||
cv2.putText(image, reconnaissancePouce(handLandmarks), (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
|
|
||||||
|
|
||||||
# Flip the image horizontally for a selfie-view display.
|
|
||||||
cv2.imshow('MediaPipe Hands', cv2.flip(image, 1))
|
|
||||||
if cv2.waitKey(5) & 0xFF == 27:
|
|
||||||
break
|
|
||||||
cap.release()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
""" etatDuPouce=["neutre","baissé","levé"]
|
|
||||||
i=0
|
|
||||||
|
|
||||||
if results.multi_hand_landmarks:
|
|
||||||
|
|
||||||
if(results.multi_hand_landmarks.gestures.categories[0].categoryName==Thumb_Up):
|
|
||||||
cv2.putText(image, str(results.multi_hand_landmarks.gestures.categories[0].categoryName), (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
|
|
||||||
else:
|
|
||||||
cv2.putText(image, "raté", (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
|
|
||||||
"""
|
|
||||||
Reference in New Issue
Block a user