intégration de la détéction audio à l'interface

This commit is contained in:
Quentin Roussel
2023-03-26 23:48:17 +02:00
parent f978ed0a8b
commit 38c9e4e0ea
23 changed files with 74 additions and 40 deletions

View File

@@ -119,7 +119,6 @@ def init_database():
if not os.path.isfile(os.path.join(data_dir, word)):
for file in os.listdir(os.path.join(data_dir,word)):
if os.path.isfile(os.path.join(data_dir, word,file)):
print(word,os.path.join(data_dir, word,file))
words.append(word)
files.append(os.path.join(data_dir, word,file))
return words,files
@@ -130,7 +129,23 @@ def get_word_metadata(word):
return data[word]
#Todo : detecte si pas de note donnée
def get_grade():
def record():
sr = 44100 # fréquence d'échantillonnage
duration = 6 # durée d'enregistrement en secondes
filename = "recording" # nom du fichier à enregistrer
record_audio(filename, duration, sr)
audio_query,sr = librosa.load(f'{filename}.wav', sr=sr)
return audio_query,sr
def analyze(audio_query,sr):
coupe_silence(audio_query)
words, files = init_database()
audio_train_list = [librosa.load(file, sr=sr)[0] for file in files]
recognized_word_index = recognize_speech(audio_query, audio_train_list, sr)
recognized_word = words[recognized_word_index]
return get_word_metadata(recognized_word)
def test():
sr = 44100 # fréquence d'échantillonnage
duration = 6 # durée d'enregistrement en secondes
filename = "recording" # nom du fichier à enregistrer

View File

@@ -1,13 +1,18 @@
import cv2
import mediapipe as mp
import numpy as np
import os
from dotenv import load_dotenv
load_dotenv()
class HandDetector():
def __init__(self):
self.camera_id = int(os.getenv("CAMERA_ID"))
self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
self.mp_hands = mp.solutions.hands
self.cap = cv2.VideoCapture(0)
self.cap = cv2.VideoCapture(self.camera_id)
self.hands = self.mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
@@ -51,8 +56,9 @@ class HandDetector():
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = self.hands.process(image)
# print(results)
if results.multi_hand_landmarks:
handsPositions = []
for hand_landmarks in results.multi_hand_landmarks:

View File

@@ -1,5 +1,5 @@
from hand_detector import HandDetector
from audio_detector import get_grade
from audio_detector import record, analyze, test
from network import ApiClient, WebsocketServer
import time
@@ -57,23 +57,26 @@ class Manager():
state, coords, size, finalDecision = res
self.server.sendMessage({"type": "effects", "effects": [{"type": state, "x":coords[0], "y": coords[1], "width": size, "height": size}]})
self.isLastHandPacketEmpty = False
self.timeLastChange = time.time()
if(finalDecision != False):
self.avis["note"] = 10 if finalDecision == "thumbs_up" else 0
self.state = 2
self.timeLastChange = time.time()
self.server.sendMessage({"type": "state", "state": 2})
elif self.isLastHandPacketEmpty == False:
self.server.sendMessage({"type":"effects","effects":[]})
self.isLastHandPacketEmpty = True
def audio(self):
result = get_grade()
audio_query,sr = record()
self.server.sendMessage({"type":"recording_done"})
result = analyze(audio_query,sr)
# result = test()
if(result != False):
print("mot detecté : " + result["display"] + " avec une note de " + str(result["grade"]))
self.server.sendMessage({"type":"new_grade","word":result["display"]})
self.avis["notes_autres"]["test"] = result["grade"]
time.sleep(3)
self.state = 3
self.timeLastChange = time.time()
self.server.sendMessage({"type": "state", "state": 3})
def thankYou(self):

View File

@@ -4,6 +4,9 @@ import json
import os
import threading
import websockets
from dotenv import load_dotenv
load_dotenv()
class WebsocketServer(threading.Thread):
def __init__(self, onMessage, port=os.getenv("PORT"), host=os.getenv("HOST")):