mirror of
https://git.roussel.pro/telecom-paris/pact.git
synced 2026-02-09 10:30:17 +01:00
intégration de la détéction audio à l'interface
This commit is contained in:
59
code_autre/Interface_Lounes/determinationGenre.py
Normal file
59
code_autre/Interface_Lounes/determinationGenre.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import cv2
|
||||
import mediapipe as mp
|
||||
|
||||
mp_drawing = mp.solutions.drawing_utils
|
||||
mp_face_mesh = mp.solutions.face_mesh
|
||||
|
||||
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
|
||||
cap = cv2.VideoCapture(0)
|
||||
with mp_face_mesh.FaceMesh(
|
||||
max_num_faces=1,
|
||||
refine_landmarks=True,
|
||||
min_detection_confidence=0.5,
|
||||
min_tracking_confidence=0.5) as face_mesh:
|
||||
while cap.isOpened():
|
||||
success, image = cap.read()
|
||||
if not success:
|
||||
print("Ignoring empty camera frame.")
|
||||
continue
|
||||
# Initialize the face mesh model
|
||||
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
|
||||
|
||||
# Load the input image
|
||||
# lecture de la vidéo
|
||||
ret, frame = cap.read()
|
||||
# conversion de l'image en RGB
|
||||
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# Process the image and extract the landmarks
|
||||
results = face_mesh.process(image)
|
||||
if results.multi_face_landmarks:
|
||||
landmarks = results.multi_face_landmarks[0]
|
||||
|
||||
# Define the landmark indices for the corners of the eyes and the tip of the nose
|
||||
left_eye = [33, 133, 246, 161, 160, 159, 158, 157, 173, 133]
|
||||
right_eye = [362, 263, 373, 380, 381, 382, 384, 385, 386, 362]
|
||||
nose_tip = 4
|
||||
|
||||
# Calculate the distance between the eyes and the nose tip
|
||||
left_eye_x = landmarks.landmark[left_eye[0]].x * image.shape[1]
|
||||
right_eye_x = landmarks.landmark[right_eye[0]].x * image.shape[1]
|
||||
nose_x = landmarks.landmark[nose_tip].x * image.shape[1]
|
||||
eye_distance = abs(left_eye_x - right_eye_x)
|
||||
nose_distance = abs(nose_x - (left_eye_x + right_eye_x) / 2)
|
||||
|
||||
# Determine the gender based on the eye and nose distances
|
||||
if eye_distance > 1.5 * nose_distance:
|
||||
gender = "Female"
|
||||
else:
|
||||
gender = "Male"
|
||||
|
||||
# Draw the landmarks on the image
|
||||
cv2.putText(image, gender, (10, 50),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||||
# affichage de la vidéo
|
||||
cv2.imshow('Video', cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
|
||||
if cv2.waitKey(10) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
# libération de la caméra et des ressources
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
88
code_autre/Interface_Lounes/reconnaissancePouce.py
Normal file
88
code_autre/Interface_Lounes/reconnaissancePouce.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import mediapipe as mp
|
||||
mp_drawing = mp.solutions.drawing_utils
|
||||
mp_drawing_styles = mp.solutions.drawing_styles
|
||||
mp_hands = mp.solutions.hands
|
||||
|
||||
def prodScalaire(V1,V2):
|
||||
return V1[0]*V2[0]+V1[1]*V2[1]/(np.sqrt(V1[0]**2+V1[1]**2)*np.sqrt(V2[0]**2+V2[1]**2))
|
||||
|
||||
def reconnaissancePouce(handLandmarks):
|
||||
etatDuPouce=["neutre","baissé","levé"]
|
||||
i=0
|
||||
j=0
|
||||
for cpt in range (0,4):
|
||||
V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]]
|
||||
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]]
|
||||
j=np.dot(V1,V2)
|
||||
if (j>0.005):
|
||||
return etatDuPouce[0]
|
||||
V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]]
|
||||
V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]]
|
||||
if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])):
|
||||
i=1
|
||||
elif(np.dot(V1,V2)>0 and handLandmarks[4][1]<handLandmarks[2][1]):
|
||||
i=2
|
||||
return etatDuPouce[i]
|
||||
|
||||
|
||||
cap = cv2.VideoCapture(0)
|
||||
with mp_hands.Hands(
|
||||
model_complexity=0,
|
||||
min_detection_confidence=0.5,
|
||||
min_tracking_confidence=0.5) as hands:
|
||||
while cap.isOpened():
|
||||
success, image = cap.read()
|
||||
if not success:
|
||||
print("Ignoring empty camera frame.")
|
||||
# If loading a video, use 'break' instead of 'continue'.
|
||||
continue
|
||||
|
||||
# To improve performance, optionally mark the image as not writeable to
|
||||
# pass by reference.
|
||||
image.flags.writeable = False
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
results = hands.process(image)
|
||||
|
||||
# Draw the hand annotations on the image.
|
||||
image.flags.writeable = True
|
||||
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||||
if results.multi_hand_landmarks:
|
||||
for hand_landmarks in results.multi_hand_landmarks:
|
||||
mp_drawing.draw_landmarks(
|
||||
image,
|
||||
hand_landmarks,
|
||||
mp_hands.HAND_CONNECTIONS,
|
||||
mp_drawing_styles.get_default_hand_landmarks_style(),
|
||||
mp_drawing_styles.get_default_hand_connections_style())
|
||||
|
||||
# Set variable to keep landmarks positions (x and y)
|
||||
handLandmarks = []
|
||||
if results.multi_hand_landmarks:
|
||||
for hand_landmarks in results.multi_hand_landmarks:
|
||||
# Fill list with x and y positions of each landmark
|
||||
for landmarks in hand_landmarks.landmark:
|
||||
handLandmarks.append([landmarks.x, landmarks.y])
|
||||
|
||||
cv2.putText(image, reconnaissancePouce(handLandmarks), (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
|
||||
|
||||
# Flip the image horizontally for a selfie-view display.
|
||||
cv2.imshow('MediaPipe Hands', cv2.flip(image, 1))
|
||||
if cv2.waitKey(5) & 0xFF == 27:
|
||||
break
|
||||
cap.release()
|
||||
|
||||
|
||||
|
||||
|
||||
""" etatDuPouce=["neutre","baissé","levé"]
|
||||
i=0
|
||||
|
||||
if results.multi_hand_landmarks:
|
||||
|
||||
if(results.multi_hand_landmarks.gestures.categories[0].categoryName==Thumb_Up):
|
||||
cv2.putText(image, str(results.multi_hand_landmarks.gestures.categories[0].categoryName), (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
|
||||
else:
|
||||
cv2.putText(image, "raté", (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
|
||||
"""
|
||||
Reference in New Issue
Block a user