intégration de la détéction audio à l'interface

This commit is contained in:
Quentin Roussel
2023-03-26 23:48:17 +02:00
parent f978ed0a8b
commit 38c9e4e0ea
23 changed files with 74 additions and 40 deletions

View File

@@ -0,0 +1,59 @@
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
cap = cv2.VideoCapture(0)
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
# Initialize the face mesh model
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
# Load the input image
# lecture de la vidéo
ret, frame = cap.read()
# conversion de l'image en RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Process the image and extract the landmarks
results = face_mesh.process(image)
if results.multi_face_landmarks:
landmarks = results.multi_face_landmarks[0]
# Define the landmark indices for the corners of the eyes and the tip of the nose
left_eye = [33, 133, 246, 161, 160, 159, 158, 157, 173, 133]
right_eye = [362, 263, 373, 380, 381, 382, 384, 385, 386, 362]
nose_tip = 4
# Calculate the distance between the eyes and the nose tip
left_eye_x = landmarks.landmark[left_eye[0]].x * image.shape[1]
right_eye_x = landmarks.landmark[right_eye[0]].x * image.shape[1]
nose_x = landmarks.landmark[nose_tip].x * image.shape[1]
eye_distance = abs(left_eye_x - right_eye_x)
nose_distance = abs(nose_x - (left_eye_x + right_eye_x) / 2)
# Determine the gender based on the eye and nose distances
if eye_distance > 1.5 * nose_distance:
gender = "Female"
else:
gender = "Male"
# Draw the landmarks on the image
cv2.putText(image, gender, (10, 50),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# affichage de la vidéo
cv2.imshow('Video', cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
if cv2.waitKey(10) & 0xFF == ord('q'):
break
# libération de la caméra et des ressources
cap.release()
cv2.destroyAllWindows()

View File

@@ -0,0 +1,88 @@
import cv2
import numpy as np
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
def prodScalaire(V1,V2):
return V1[0]*V2[0]+V1[1]*V2[1]/(np.sqrt(V1[0]**2+V1[1]**2)*np.sqrt(V2[0]**2+V2[1]**2))
def reconnaissancePouce(handLandmarks):
etatDuPouce=["neutre","baissé","levé"]
i=0
j=0
for cpt in range (0,4):
V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]]
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]]
j=np.dot(V1,V2)
if (j>0.005):
return etatDuPouce[0]
V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]]
V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]]
if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])):
i=1
elif(np.dot(V1,V2)>0 and handLandmarks[4][1]<handLandmarks[2][1]):
i=2
return etatDuPouce[i]
cap = cv2.VideoCapture(0)
with mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
# Set variable to keep landmarks positions (x and y)
handLandmarks = []
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
# Fill list with x and y positions of each landmark
for landmarks in hand_landmarks.landmark:
handLandmarks.append([landmarks.x, landmarks.y])
cv2.putText(image, reconnaissancePouce(handLandmarks), (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Hands', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
""" etatDuPouce=["neutre","baissé","levé"]
i=0
if results.multi_hand_landmarks:
if(results.multi_hand_landmarks.gestures.categories[0].categoryName==Thumb_Up):
cv2.putText(image, str(results.multi_hand_landmarks.gestures.categories[0].categoryName), (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
else:
cv2.putText(image, "raté", (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
"""