Intégration de la reco d'image à l'interface borne

This commit is contained in:
Quentin Roussel
2023-03-22 14:39:56 +01:00
parent 15bc1c7714
commit d896767543
11 changed files with 131 additions and 156 deletions

View File

@@ -0,0 +1,98 @@
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
def prodScalaire(V1,V2):
return (V1[0]*V2[0]+V1[1]*V2[1])/((V1[0]**2+V1[1]**2)**(1/2)*(V2[0]**2+V2[1]**2)**(1/2)) #produit scalaire normalisé
# initialisation de la caméra
cap = cv2.VideoCapture(0)
# initialisation de Mediapipe Hands
with mp_hands.Hands( static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5, min_tracking_confidence=0.5) as hands:
while cap.isOpened():
# lecture de la vidéo
ret, frame = cap.read()
# conversion de l'image en RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# détection des mains
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
# détection du nombre de doigts levés
hand_landmarks = [0, 0]
finger_count = 0
if len(results.multi_hand_landmarks) >0 :
hand_landmarks[0] = results.multi_hand_landmarks[0]
V0= [hand_landmarks[0].landmark[2].x - hand_landmarks[0].landmark[0].x, hand_landmarks[0].landmark[2].y - hand_landmarks[0].landmark[0].y]
V1= [hand_landmarks[0].landmark[4].x - hand_landmarks[0].landmark[2].x, hand_landmarks[0].landmark[4].y - hand_landmarks[0].landmark[2].y]
if prodScalaire(V0,V1) > 0.905135675:
finger_count += 1
V0= [hand_landmarks[0].landmark[8].x - hand_landmarks[0].landmark[6].x, hand_landmarks[0].landmark[8].y - hand_landmarks[0].landmark[6].y]
V1= [hand_landmarks[0].landmark[6].x - hand_landmarks[0].landmark[0].x, hand_landmarks[0].landmark[6].y - hand_landmarks[0].landmark[0].y]
if prodScalaire(V0,V1) > 0:
finger_count += 1
V0= [hand_landmarks[0].landmark[12].x - hand_landmarks[0].landmark[10].x, hand_landmarks[0].landmark[12].y - hand_landmarks[0].landmark[10].y]
V1= [hand_landmarks[0].landmark[10].x - hand_landmarks[0].landmark[0].x, hand_landmarks[0].landmark[10].y - hand_landmarks[0].landmark[0].y]
if prodScalaire(V0,V1) > 0:
finger_count += 1
V0= [hand_landmarks[0].landmark[20].x - hand_landmarks[0].landmark[18].x, hand_landmarks[0].landmark[20].y - hand_landmarks[0].landmark[18].y]
V1= [hand_landmarks[0].landmark[18].x - hand_landmarks[0].landmark[0].x, hand_landmarks[0].landmark[18].y - hand_landmarks[0].landmark[0].y]
if prodScalaire(V0,V1) > 0:
finger_count += 1
V0= [hand_landmarks[0].landmark[16].x - hand_landmarks[0].landmark[14].x, hand_landmarks[0].landmark[16].y - hand_landmarks[0].landmark[14].y]
V1= [hand_landmarks[0].landmark[14].x - hand_landmarks[0].landmark[0].x, hand_landmarks[0].landmark[14].y - hand_landmarks[0].landmark[0].y]
if prodScalaire(V0,V1) > 0:
finger_count += 1
if len(results.multi_hand_landmarks) >1 :
hand_landmarks[1] = results.multi_hand_landmarks[1]
V0= [hand_landmarks[1].landmark[2].x - hand_landmarks[1].landmark[0].x, hand_landmarks[1].landmark[2].y - hand_landmarks[1].landmark[0].y]
V1= [hand_landmarks[1].landmark[4].x - hand_landmarks[1].landmark[2].x, hand_landmarks[1].landmark[4].y - hand_landmarks[1].landmark[2].y]
if prodScalaire(V0,V1) > 0.905135675:
finger_count += 1
V0= [hand_landmarks[1].landmark[8].x - hand_landmarks[1].landmark[6].x, hand_landmarks[1].landmark[8].y - hand_landmarks[1].landmark[6].y]
V1= [hand_landmarks[1].landmark[6].x - hand_landmarks[1].landmark[0].x, hand_landmarks[1].landmark[6].y - hand_landmarks[1].landmark[0].y]
if prodScalaire(V0,V1) > 0:
finger_count += 1
V0= [hand_landmarks[1].landmark[12].x - hand_landmarks[1].landmark[10].x, hand_landmarks[1].landmark[12].y - hand_landmarks[1].landmark[10].y]
V1= [hand_landmarks[1].landmark[10].x - hand_landmarks[1].landmark[0].x, hand_landmarks[1].landmark[10].y - hand_landmarks[1].landmark[0].y]
if prodScalaire(V0,V1) > 0:
finger_count += 1
V0= [hand_landmarks[1].landmark[20].x - hand_landmarks[1].landmark[18].x, hand_landmarks[1].landmark[20].y - hand_landmarks[1].landmark[18].y]
V1= [hand_landmarks[1].landmark[18].x - hand_landmarks[1].landmark[0].x, hand_landmarks[1].landmark[18].y - hand_landmarks[1].landmark[0].y]
if prodScalaire(V0,V1) > 0:
finger_count += 1
V0= [hand_landmarks[1].landmark[16].x - hand_landmarks[1].landmark[14].x, hand_landmarks[1].landmark[16].y - hand_landmarks[1].landmark[14].y]
V1= [hand_landmarks[1].landmark[14].x - hand_landmarks[1].landmark[0].x, hand_landmarks[1].landmark[14].y - hand_landmarks[1].landmark[0].y]
if prodScalaire(V0,V1) > 0:
finger_count += 1
# affichage du nombre de doigts levés
cv2.putText(image, f"Finger count: {finger_count}", (10, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# affichage de la vidéo
cv2.imshow('Video', cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
if cv2.waitKey(10) & 0xFF == ord('q'):
break
# libération de la caméra et des ressources
cap.release()
cv2.destroyAllWindows()

View File

@@ -1,44 +1,78 @@
import cv2
import mediapipe as mp
import numpy as np
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
# For webcam input:
cap = cv2.VideoCapture(0)
hands = mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
BUFFER_LENGTH = 30
TH_FRACTION = 3/4
resultBuffer = []
def frame():
if cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
return
def reconnaissancePouce(handLandmarks):
etatDuPouce=["neutre","thumbs_down","thumbs_up"]
i=0
j=0
for cpt in range (0,4):
V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]]
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]]
j=np.dot(V1,V2)
if (j>0):
return etatDuPouce[0]
V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]]
V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]]
if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])):
i=1
elif(np.dot(V1,V2)>0 and handLandmarks[4][1]<handLandmarks[2][1]):
i=2
return etatDuPouce[i]
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
# Flip the image horizontally for a selfie-view display.
# cv2.imshow('MediaPipe Hands', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
return
# cap.release()
def getThumbState():
if cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
return False
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = hands.process(image)
# print(results)
handLandmarks = []
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
# Fill list with x and y positions of each landmark
for landmarks in hand_landmarks.landmark:
handLandmarks.append([landmarks.x, landmarks.y])
thumbState = reconnaissancePouce(handLandmarks)
resultBuffer.append(thumbState)
if(len(resultBuffer) > BUFFER_LENGTH):
resultBuffer.pop(0)
thumbsUpCount = sum(map(lambda x : x == "thumbs_up", resultBuffer))
thumbsDownCount = sum(map(lambda x : x == "thumbs_down", resultBuffer))
print(thumbsUpCount,thumbsDownCount)
if(thumbsUpCount > TH_FRACTION * BUFFER_LENGTH):
result = "thumbs_up"
elif(thumbsDownCount > TH_FRACTION * BUFFER_LENGTH):
result = "thumbs_down"
else:
result = False
if(thumbState != "neutre"):
return thumbState, handLandmarks[9], np.linalg.norm(np.array(handLandmarks[9]) - np.array(handLandmarks[0])), result
return False

View File

@@ -4,12 +4,14 @@ import math
import websockets
import random
import os
import hands
import time
from hands import getThumbState
values = []
class WebsocketServer:
def __init__(self,getEffects,port=os.getenv("PORT"),host=os.getenv("HOST")) -> None:
self.thumbResult = None
self.state = 0
self.host = host
self.port = port
self.getEffects = getEffects
@@ -21,19 +23,23 @@ class WebsocketServer:
async def handler(self,websocket):
while True:
start = time.time()
messages = self.getEffects()
hands.frame()
await websocket.send(json.dumps(messages))
# await asyncio.sleep(1/30)
delay = time.time() - start
values.append(1/delay)
avg = sum(values) / len(values)
dev = [(v - avg) ** 2 for v in values]
print(avg, math.sqrt(sum(dev)/len(dev)))
#Remplacer ça par la fonction qui récupère les effets (dans le module de reconnaissance de gestes)
if(self.state == 0):
messages, result = self.getEffects()
if(messages != False):
if(result == False):
await websocket.send(json.dumps(messages))
else:
self.thumbResult = result
self.state = 1
await websocket.send('{"type":"state","state":2}')
def getEffects():
return {"type": "effects", "effects": [{"type": "thumbs_up", "x":random.randint(0,100), "y": random.randint(0,100), "width": 50, "height": 50}]}
res = getThumbState()
if(res != False):
state, coords, size, result = res
return {"type": "effects", "effects": [{"type": state, "x":coords[0], "y": coords[1], "width": size, "height": size}]}, result
else:
return False,False
server = WebsocketServer(getEffects)
asyncio.run(server.run())

View File

@@ -0,0 +1,88 @@
import cv2
import numpy as np
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
def prodScalaire(V1,V2):
return V1[0]*V2[0]+V1[1]*V2[1]
def reconnaissancePouce(handLandmarks):
etatDuPouce=["neutre","baissé","levé"]
i=0
j=0
for cpt in range (0,4):
V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]]
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]]
j=np.dot(V1,V2)
if (j>0):
return etatDuPouce[0]
V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]]
V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]]
if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])):
i=1
elif(np.dot(V1,V2)>0 and handLandmarks[4][1]<handLandmarks[2][1]):
i=2
return etatDuPouce[i]
cap = cv2.VideoCapture(0)
with mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
# Set variable to keep landmarks positions (x and y)
handLandmarks = []
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
# Fill list with x and y positions of each landmark
for landmarks in hand_landmarks.landmark:
handLandmarks.append([landmarks.x, landmarks.y])
cv2.putText(image, reconnaissancePouce(handLandmarks), (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Hands', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
""" etatDuPouce=["neutre","baissé","levé"]
i=0
if results.multi_hand_landmarks:
if(results.multi_hand_landmarks.gestures.categories[0].categoryName==Thumb_Up):
cv2.putText(image, str(results.multi_hand_landmarks.gestures.categories[0].categoryName), (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
else:
cv2.putText(image, "raté", (50, 450), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 10)
"""

View File

@@ -1,4 +1,5 @@
websockets
requests
opencv-python
mediapipe
mediapipe
numpy