preparation intégration reconaissance vocale

This commit is contained in:
Quentin Roussel
2023-03-23 09:53:16 +01:00
parent bc0270b707
commit e097c1fd23
13 changed files with 87 additions and 32 deletions

View File

@@ -1,4 +1,4 @@
FROM python:3.8-slim
FROM python:3.8
#Ne pas créer les fichiers .pyc
ENV PYTHONDONTWRITEBYTECODE=1
@@ -7,7 +7,7 @@ ENV PYTHONUNBUFFERED=1
#Installation des dépendances de opencv
RUN apt-get update
RUN apt-get install ffmpeg libsm6 libxext6 -y
RUN apt-get install ffmpeg libsm6 libxext6 portaudio19-dev python3-pyaudio -y
# Installation des dépendances python
COPY requirements.txt .

View File

@@ -0,0 +1,208 @@
import librosa
import os
import numpy as np
import math
from scipy.io import wavfile
import wave
from scipy.fftpack import fft,dct
import time
from matplotlib.patches import ConnectionPatch
import matplotlib.pyplot as plt
import numpy as np
import scipy.spatial.distance as dist
import pyaudio
import wave
def dp(distmat):
N,M = distmat.shape
# Initialisons the cost matrix
costmat =np.zeros((N+1,M+1))
for i in range (1,N+1):
costmat[i,0]=np.inf
for i in range (1,M+1):
costmat[0,i]=np.inf
for i in range (N):
for j in range (M):
#on calcule le cout minimal pour chaque chemin.pour atteindre the costmat[i][j] il y a trois chemins possibles on choisit celui de cout minimal
penalty = [
costmat[i,j], # cas T==0
costmat[i,j+1] , # cas T==1
costmat[i+1,j]] # cas T==2
ipenalty = np.argmin(penalty)
costmat[i+1,j+1] = distmat[i,j] + penalty[ipenalty]
#enlever les valeurs de l infini
costmat = costmat[1: , 1:]
return (costmat, costmat[-1, -1]/(N+M))
def divsignalaudiobis(signal):
long_signal = 20 # 20 ms
recouvrement = 10 # 10 ms
long_echantillon = long_signal*sr//1000
recouvrement_echantillon = recouvrement*sr//1000
nb_echantillon = int(np.ceil((len(signal) - long_echantillon)/recouvrement_echantillon) + 1)
long_a_completer = recouvrement_echantillon*(nb_echantillon -1) + long_echantillon - len(signal)
if (long_a_completer != 0):
echantillon_data = np.pad(signal,(0,long_a_completer),mode='constant') # on complète le dernier échantillon par des 0
else :
nb_echantillon -= 1
echantillon_data = np.append(echantillon_data[0], echantillon_data[1:])
data = np.zeros((nb_echantillon, long_echantillon))
for i in range(nb_echantillon):
echantillon_i = echantillon_data[i*recouvrement_echantillon : i*recouvrement_echantillon + long_echantillon]
data[i,:] = echantillon_i
return data
def myfft(signal, fe):
n= len(signal)
Te = 1/fe
S = [0 + 0j]*(450)
for l in range(50, 500):
f = l
for i in range (n):
t= Te * i
S[l-50] += signal[i]*np.exp(-2*math.pi*f*t*1j)
S[l-50] = abs(S[l-50])/n
return S
def puissance_spec(signal):
amplitude_fft = np.absolute(signal)
return (amplitude_fft**2)/44100 # long fft = 512
def BankFiltre(rate, puis_spec):
freq_min = 20
freq_max = rate//2
freq_mel_min = 1000*np.log2(1 +freq_min/1000)
freq_mel_max = 1000*np.log2(1+ freq_max/1000)
nb_filtre = 40 # on prend en général 40 filtres
mel_points = np.linspace(freq_mel_min, freq_mel_max, 42)
hz_points = 1000*(2**(mel_points/1000)-1)# on convertit en hz
bankf = np.zeros((nb_filtre, int(np.floor(22050 +1))))
for m in range(1, nb_filtre +1): # pour chaque filtre, on fait :
f_m_min = int(math.floor(hz_points[m-1])) # point de gauche
f_m = int(math.floor(hz_points[m])) # sommet
f_m_max = int(math.floor(hz_points[m+1])) # point de droite
for k in range(f_m_min, f_m):
bankf[m - 1, k] = (k - hz_points[m - 1]) / (hz_points[m] - hz_points[m - 1])
for k in range(f_m, f_m_max):
bankf[m - 1, k] = ((hz_points[m + 1]) - k) / (hz_points[m + 1] - hz_points[m])
filter_bank = np.dot(puis_spec,np.transpose(bankf)) # Produit vectoriel/matriciel #ipdb
filter_bank = np.where(filter_bank == 0, np.finfo(float).eps, filter_bank) # attention à 0 dans le log.
return filter_bank
def mfcc(signal, rate):
data = divsignalaudiobis(signal)
data_fft = np.fft.rfft(data, 44100)
data_puiss = puissance_spec(data_fft)
data_filtre = BankFiltre(rate, data_puiss)
pre_mfcc = np.log(data_filtre)
mfcc = dct(pre_mfcc, type=2, axis=1, norm="ortho")[:, 0 : 13] # on ne garde que les 13 premiers
#return mfcc
return mfcc
def calculate_dtw_cost(mfccs_query , mfccs_train):
distmat = dist.cdist(mfccs_query, mfccs_train,"cosine")
costmat,mincost = dp(distmat)
return mincost
def recognize_speech(audio_query, audio_train_list, sr):#sr frequence d echantillonnage
# Calculate MFCCs for query audio
mfccs_query = mfcc(audio_query, sr)
# Calculate DTW cost for each audio in training data
dtw_costs = []
for audio_train in audio_train_list:
mfccs_train = mfcc(audio_train, sr)
mincost = calculate_dtw_cost(mfccs_query, mfccs_train)
dtw_costs.append(mincost)
# Find index of word with lowest DTW cost
index = np.argmin(dtw_costs)
# Return recognized word
return index
# Example usage
def record_audio(filename, duration, sr):
chunk = 1024
sample_format = pyaudio.paInt16
channels = 1
record_seconds = duration
filename = f"{filename}.wav"
p = pyaudio.PyAudio()
stream = p.open(format=sample_format,
channels=channels,
rate=sr,
frames_per_buffer=chunk,
input=True)
frames = []
print(f"Enregistrement en cours...")
for i in range(0, int(sr / chunk * record_seconds)):
data = stream.read(chunk)
frames.append(data)
stream.stop_stream()
stream.close()
p.terminate()
print("Enregistrement terminé")
wf = wave.open(filename, "wb")
wf.setnchannels(channels)
wf.setsampwidth(p.get_sample_size(sample_format))
wf.setframerate(sr)
wf.writeframes(b"".join(frames))
wf.close()
print(f"Fichier enregistré sous {filename}")
def coupe_silence(signal):
t = 0
if signal[t] == 0 :
p = 0
while signal[t+p] == 0 :
if p == 88 :
signal = signal[:t] + signal[t+p:]
coupe_silence(signal)
else :
p = p+1
#Todo : detecte si pas de note donnée
def get_grade():
######## TEST DEBUG ########
time.sleep(6)
return 5
sr = 44100 # fréquence d'échantillonnage
duration = 6 # durée d'enregistrement en secondes
filename = "recording" # nom du fichier à enregistrer
data_dir = "audio_data/"
record_audio(filename, duration, sr)
audio_query, sr = librosa.load(f'{filename}.wav', sr=sr)
coupe_silence(audio_query)
training_file_names = []
for path in os.listdir(data_dir):
if os.path.isfile(os.path.join(data_dir, path)):
training_file_names.append(data_dir + path)
print(training_file_names)
audio_train_list = [librosa.load(file, sr=sr)[0] for file in training_file_names]
recognized_word_index = recognize_speech(audio_query, audio_train_list, sr)
print(f'Recognized word: {recognized_word_index}')
return recognized_word_index
print(get_grade())

View File

@@ -1,4 +1,5 @@
from hand_detector import HandDetector
from audio_detector import get_grade
from network import WebsocketServer
import time
@@ -6,11 +7,13 @@ import time
class Manager():
def __init__(self):
self.state = 0
self.avis = {
self.defualtAvis = {
"note": None,
"commentaire": None,
"notes_autres": {}
}
self.avis = self.defualtAvis
self.server = WebsocketServer(None)
self.server.start()
self.handDetector = HandDetector()
@@ -23,15 +26,29 @@ class Manager():
self.sleep()
if(self.state == 1):
self.camera()
if(self.state == 2):
self.audio()
if(self.state == 3):
self.thankYou()
time.sleep(0.01)
#Fonction qui est executée pendant que la borne est en veille, reveille la borne si une main est detectée
def sleep(self):
res = self.handDetector.detect()
print(res)
if(res != False):
self.state = 1
self.server.sendMessage({"type": "state", "state": 1})
def audio(self):
grade = get_grade()
if(grade != False):
self.server.sendMessage({"type":"new_grade","grade":grade})
self.avis["notes_autres"]["test"] = grade
time.sleep(3)
self.state = 2
self.server.sendMessage({"type": "state", "state": 3})
#Envoie la position de la main a l'écran et passe a l'étape suivante si une main est detectée pendant assez longtemps
def camera(self):
@@ -44,5 +61,10 @@ class Manager():
self.state = 2
self.server.sendMessage({"type": "state", "state": 2})
def thankYou(self):
time.sleep(10)
self.state = 0
self.server.sendMessage({"type": "state", "state": 0})
self.sendReview()
self.avis = self.defualtAvis

View File

@@ -28,4 +28,10 @@ class WebsocketServer(threading.Thread):
await asyncio.sleep(0.01)
def sendMessage(self,message):
self.messageQueue.append(message)
self.messageQueue.append(message)
class ApiClient():
def __init__(self, host=os.getenv("API_HOST"), port=os.getenv("API_PORT")):
self.host = host
self.port = port

Binary file not shown.

View File

@@ -2,4 +2,7 @@ websockets
requests
opencv-python
mediapipe
numpy
numpy
pyaudio
librosa
scipy

View File

@@ -39,6 +39,8 @@ services:
#API de gestion des avis, permet d'ajouter ou de récuperer des avis ou les stats sur les avis par des requêtes HTTP
reviews_api:
container_name: reviews_api
expose:
- 8080
ports:
- 8080:8080
environment:
@@ -73,11 +75,11 @@ services:
- 800:80
#Formulaire de retour d'avis
Formulaire:
formulaire:
image: httpd:latest
volumes:
- ./Formulaire:/usr/local/apache2/htdocs/
container_name: Formulaire
- ./formulaire:/usr/local/apache2/htdocs/
container_name: formulaire
ports:
- 80:80
# #Backend de la borne : scripts pythons de reconnaissances video et audio
@@ -92,6 +94,8 @@ services:
environment:
- PORT=5000
- HOST=backend_reconnaissance
- API_HOST=reviews_api
- API_PORT=8080
ports:
#Ce container est le serveur websocker dont le client est l'interface de la borne qui tourne dans le navigateur
- 5000:5000

View File

@@ -48,4 +48,9 @@ html, body {
.instructions > .title {
border-bottom: 3px #6B8000 solid;
}
.instructions > table, .instructions > th,.instructions > td {
border: 1px solid #6B8000;
border-collapse: collapse;
}

View File

@@ -8,4 +8,10 @@ class AudioPage {
this.isEnabled = isEnabled;
this.DOMElement.style.display = isEnabled ? "block" : "none";
}
setGrade(grade) {
if(this.isEnabled) {
this.DOMElement.getElementById("grade").innerHTML = grade.toString();
}
}
}

View File

@@ -1,5 +1,5 @@
class WebsocketClient {
constructor(onNewEffects, onNewGrade, onNewState) {
constructor(onNewEffects, onNewState, onNewGrade) {
this.socket = new WebSocket("ws://localhost:5000");
this.socket.addEventListener("open", (event) => {
this.socket.send("connected");

View File

@@ -18,7 +18,8 @@ class StateManager {
this.setState(STATE.video);
this._cameraPage.setEffects(effects)
},
(state) => this.setState(state)
(state) => this.setState(state),
(grade) => this._audioPage.setGrade(grade)
);
this._sleepingPage.enabled = true;

View File

@@ -35,7 +35,7 @@
<div class="title">
<h1>Enregistrement audio blabal</h1>
</div>
<p>Prononcez à voix haute les notes correspondant aux critères suivants dans l'ordre</p>
<p>Donnez une note sur 10 au critère suivant</p>
<table>
<tr>
<th>Critère</td>
@@ -43,7 +43,7 @@
</tr>
<tr>
<td>Calme</td>
<td> /10</td>
<td> <span id="grade"></span>/10</td>
</tr>
</table>
</div>