
rapport.md 1/27/2023

1 / 5

Rapport PAN2

Choix du materiel

Ecran (InnoLux N133HSE): Pour l'écran nous avons choisi un écran 13.3" (non tactile), nous avons

estimé la taille suffisante pour un confort de lecture à distance raisonable de la borne. De plus cet

écran présente un système de montage à vis qui facilitera son intégration dans la borne.

Camera : Nous avions le choix entre 2 camera

Une webcam Logitech c525

Grand choix de résolutions avec un framerate élevé par exemple 640x480@30fps,

960x720@30fps, 1920x1080@5fps

Mais champs de vision beaucoup trop faible pour notre application

Une camera de surveillance grand angle de la marque ELP

Choix de résoltions restreint, mais utilisable dans des bonnes conditions de luminosité

Champs de vision adapté a notre utilisation

Cette camera apporte des distortions importantes sur les bords, cela compléxifie la

reconnaissance d'image.

Nous avons choisi la deuxième camera pour les raisons citées ci-dessus

Ordinateur : Nous avons à notre disposition un AMD Cubi doté de 4Go de RAM, 128Go de SSD et un

Intel Core i3 5005U. L'objectif du reste de ce document est d'évaluer si les performances de cet

ordinateur sont suffisantes pour notre application.

Choix du système d'exploitation

Nous avons choisi d'installer debian 11, une distribution de linux légère avec laquelle nous étions familiers.

Pour l'environement de bureau nous avons choisi LXDE là aussi pour le minimalisme qu'il présente au vu

des performances de la machine. Nous avons par la suite désinstallé tout les packets installé par défaut par

LXDE dont nous n'avions pas besoin. (Par exemple les jeux, la calculatrice, etc.)

rapport.md 1/27/2023

2 / 5

Benchmarking

Pour évaluer la capacité du materiel à supporter la charge de notre application, nous avons executé en

parallèle les applications qui seront utilisés pour le produit final ou une application aux besoins équivalents

quand cela n'était pas possible. De ce fait ce benchmark n'est pas exact mais nous donnera un ordre d'idée

sur les besoins de notre projet.

Liste des modules à executer

Pour ce faire nous avons mis en place un container Docker par module de notre application :

db : un serveur mysql basique pour la base de donnée

phpmyadmin : l'interface phpmyadmin pour gérer la base de donnée. Ce container n'est pas

absolument nécessaire au produit final mais permet d'administrer facilement la base de donnée

review_api : un serveur express pour servir l'api permettant de récupérer et ajouter des avis dans la

base de donnée, ainsi que de calculer les statistiques.

interface_borne: un serveur apache2 permettant de servir l'interface graphique de la borne.

interface_admin: idem pour l'interface graphique, ce serveur pourait être fusioné avec

interface_borne mais dans le cadre de ce benchmarking on les gardera séparés.

backend_reconnaissance: Ce container s'occupera de la reconnaissance audio et video de la borne.

Cependant ces deux processus ne seront jamais actifs en même temps, de plus la reconnaissance

d'image sera la plus couteuse en terme de puissance de calcul. C'est pour cela qu'ici nous avons

uniquement utilisé mediapipe hands (bibliothèque python de reconaissance de mains) avec une

implémentation de la communication avec l'interface de la borne comme programme équivalent.

video_loopback : ce container sert à contourner un problème que nous avons rencontré avec la

gestion des camera par linux. En effet seul un programme peut accéder au flux d'une camera à la

fois. C'est pour cela que nous avons utilisé v4l2loopback avec ffmpeg pour dupliquer le flux de

notre camera dans 2 cameras virtuelles.

En parallèle firefox est ouvert pour afficher l'interface graphique de la borne.

Résultats

En réglant la camera a 640x480@30fps, aucune perte d'image n'est observée dans le retour vidéo dans

firefox.

Nous avons observé la capacité de Mediapipe l'image de la camera et de la communiquer à l'interface web

qui affiche le résultat. Nous avons obtenu les résultats suivants pour 2 modes de gestion de fréquence du

processeur (la gestions automatique de base schedutil et performance qui utillise la fréquence maximale)

CPU Scheduler FPS moyens Ecart type

schedutil 10.4 1.4

performance 10.1 0.9

Ce taux de rafraichissement est suffisant pour que l'application paraisse relativement réactive à

l'utilisateur, bien que cela ne soit pas du temps réel.

rapport.md 1/27/2023

3 / 5

Pendant ce temps l'api de traitement des avis et la base de donnée fonctionnent correctement en affichant

une lattence de 8ms pour une récupération de la liste d'avis.

Pendance ce temps l'utilisation du processeur qui varie de 250% à 280% (sur 400% pour les 4 coeurs) et une

utilisation de la RAM de 50% (1.96Go) ce qui nous laisse de la marge en cas d'ajout imprévu.

Les processus utilisant le plus de CPU sont la reconaissance d'image (70%) et firefox pour afficher

l'interface de la borne (70-80%). En cas de besoin ces valeurs pourront être diminuées au prix de la fluidité

du retour vidéo. Pour la RAM c'est le serveur mysql (10%) et firefox (10%) qui consomment le plus.

Pour ce qui est de la température, comme la borne sera dans un environement fermé, il était important de

tester le bon fonctionnement du materiel dans ces conditions. Nous avons laissé tourner l'application

pendant 2h dans une boite en carton fermée. Au début du test la température du processeur était de 50°C,

au bout de 2h la température était montée a 70°C, ce qui reste assez faible pour ne pas limiter les

performances du CPU.

$ sensors
acpitz-acpi-0
Adapter: ACPI interface
temp1: +27.8°C (crit = +110.0°C)
temp2: +29.8°C (crit = +110.0°C)

coretemp-isa-0000
Adapter: ISA adapter
Package id 0: +69.0°C (high = +105.0°C, crit = +105.0°C)
Core 0: +69.0°C (high = +105.0°C, crit = +105.0°C)
Core 1: +68.0°C (high = +105.0°C, crit = +105.0°C)

rapport.md 1/27/2023

4 / 5

Impact de l'utilisation de Docker

Nous nous sommes également posé la question de l'impact de l'utilisation de docker dans les performances

de notre projet. Pour mesurer cela, nous avons effectué des benchmark directement sur le système puis

dans un container Docker pour mesurer la différence. Nous avons utlisé sysbench pour évaluer les

performances du CPU, de la RAM et du disque (écriture/lecture aléatoire).

Le script permettant de faire le benchmark

sysbench --test=cpu run >>sysbench.log
sysbench --test=memory run >>sysbench.log
sysbench --test=fileio --file-test-mode=rndrw prepare
sysbench --test=fileio --file-test-mode=rndrw run >>sysbench.log
sysbench --test=fileio cleanup

Le Dockerfile du container dans lequel nous avons exectué le même script

FROM alpine:latest
RUN apk add --no-cache sysbench
WORKDIR /app
COPY benchmark_script.sh /app/benchmark_script.sh
CMD ["sh","benchmark_script.sh"]

Les résultats de ce test on permis de conclure que l'impact de docker était négligeable.

Type CPU (Evts/s) RAM (Mbi/s) Disque lecture(Mbi/s) Disque écriture (Mbi/s)

Normal 613.14 3259.84 12.34 8.22

Docker 552.76 2794.21 12.27 8.18

Conclusion

Au vu des tests effectués le materiel dont nous disposons semble adapté à notre projet. Il serait cependant

possible de réduire l'utilisation faite de l'ordinateur embarqué dans la borne en déplaçant la partie

rapport.md 1/27/2023

5 / 5

stockage et traitement des avis sur un autre serveur.

