import cv2 import mediapipe as mp import numpy as np import os from dotenv import load_dotenv load_dotenv() class HandDetector(): def __init__(self): self.camera_id = int(os.getenv("CAMERA_ID")) self.mp_drawing = mp.solutions.drawing_utils self.mp_drawing_styles = mp.solutions.drawing_styles self.mp_hands = mp.solutions.hands self.cap = cv2.VideoCapture(self.camera_id) self.hands = self.mp_hands.Hands( model_complexity=0, min_detection_confidence=0.5, min_tracking_confidence=0.5) #Paramètres self.BUFFER_LENGTH = 60 self.DETECTION_THRESHOLD = 3/4 self.resultBuffer = [] def reset(self): self.resultBuffer = [] def reconnaissancePouce(self,handLandmarks): etatDuPouce=["neutre","thumbs_down","thumbs_up"] i=0 j=0 for cpt in range (0,4): V1=[handLandmarks[(4*cpt)+5][0]-handLandmarks[(4*cpt)+0][0],handLandmarks[(4*cpt)+5][1]-handLandmarks[(4*cpt)+0][1]] V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+5][1]] j1=np.dot(V1,V2) V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]] V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]] j2=np.dot(V1,V2) if (j1>0 and j2>0): return etatDuPouce[0] V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]] V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]] if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])): i=1 elif(np.dot(V1,V2)>0 and handLandmarks[4][1] self.BUFFER_LENGTH): self.resultBuffer.pop(0) thumbsUpCount = sum(map(lambda x : x == "thumbs_up", self.resultBuffer)) thumbsDownCount = sum(map(lambda x : x == "thumbs_down", self.resultBuffer)) if(thumbsUpCount > self.DETECTION_THRESHOLD * self.BUFFER_LENGTH): result = "thumbs_up" elif(thumbsDownCount > self.DETECTION_THRESHOLD * self.BUFFER_LENGTH): result = "thumbs_down" else: result = False progress = 0 if thumbState == "thumbs_up": progress = thumbsUpCount / (self.BUFFER_LENGTH * self.DETECTION_THRESHOLD) elif thumbState == "thumbs_down": progress = thumbsDownCount / (self.BUFFER_LENGTH * self.DETECTION_THRESHOLD) if(thumbState != "neutre"): return thumbState, handLandmarks[9], np.linalg.norm(np.array(handLandmarks[9]) - np.array(handLandmarks[0])), result, progress return False if __name__ == "__main__": h = HandDetector() while(1): print(h.detect())