rapport.md 1/26/2023

Rapport PAN2

Choix du materiel

o Ecran (InnoLux N133HSE): Pour ['écran nous avons choisi un écran 13.3" (non tactile), nous avons
estimé la taille suffisante pour un confort de lecture a distance raisonable de la borne. De plus cet
écran présente un systéme de montage a vis qui facilitera son intégration dans la borne.

« Camera: Nous avions le choix entre 2 camera
o Une webcam Logitech c525

= Grand choix de résolutions avec un framerate élevé par exemple 640x480@30fps,
960x720@30fps, 1920x1080@5fps
» Mais champs de vision beaucoup trop faible pour notre application

o Une camera de surveillance grand angle de la marque ELP

= Choix de résoltions restreint, mais utilisable dans des bonnes conditions de luminosité

= Champs de vision adapté a notre utilisation
= Cette camera apporte des distortions importantes sur les bords, cela compléxifie la
reconnaissance d'image.

o Nous avons choisi la deuxieme camera pour les raisons citées ci-dessus

« Ordinateur: Nous avons a notre disposition un AMD Cubi doté de 4Go de RAM, 128Go de SSD et un
Intel Core i3 5005U. L'objectif du reste de ce document est d'évaluer si les performances de cet
ordinateur sont suffisantes pour notre application.

Choix du systeme d'exploitation

Nous avons choisi d'installer debian 11, une distribution de linux légére avec laquelle nous étions familiers.
Pour l'environement de bureau nous avons choisi LXDE la aussi pour le minimalisme qu'il présente au vu
des performances de la machine. Nous avons par la suite désinstallé tout les packets installé par défaut par
LXDE dont nous n'avions pas besoin. (Par exemple les jeux, la calculatrice, etc.)



rapport.md 1/26/2023

Benchmarking

Pour évaluer la capacité du materiel a supporter la charge de notre application, nous avons executé en
paralléle les applications qui seront utilisés pour le produit final ou une application aux besoins équivalents
quand cela n'était pas possible. De ce fait ce benchmark n'est pas exact mais nous donnera un ordre d'idée
sur les besoins de notre projet.

Liste des modules a executer
Pour ce faire nous avons mis en place un container Docker par module de notre application :

« db: un serveur mysql basique pour la base de donnée

o phpmyadmin: l'interface phpmyadmin pour gérer la base de donnée. Ce container n'est pas
absolument nécessaire au produit final mais permet d'administrer facilement la base de donnée

e review_api: un serveur express pour servir l'api permettant de récupérer et ajouter des avis dans la
base de donnée, ainsi que de calculer les statistiques.

« interface_borne: un serveur apache2 permettant de servir l'interface graphique de la borne.

« interface_admin: idem pour l'interface graphique, ce serveur pourait étre fusioné avec
interface_borne mais dans le cadre de ce benchmarking on les gardera séparés.

« backend_reconnaissance: Ce container s'occupera de la reconnaissance audio et video de la borne.
Cependant ces deux processus ne seront jamais actifs en méme temps, de plus la reconnaissance
d'image sera la plus couteuse en terme de puissance de calcul. C'est pour cela qu'ici nous avons
uniquement utilisé mediapipe hands (bibliothéque python de reconaissance de mains) avec une
implémentation de la communication avec l'interface de la borne comme programme équivalent.

« video_loopback : ce container sert a contourner un probleme que nous avons rencontré avec la
gestion des camera par linux. En effet seul un programme peut accéder au flux d'une camera ala
fois. C'est pour cela que nous avons utilisé avec pour dupliquer le flux de
notre camera dans 2 cameras virtuelles.

En parallele firefox est ouvert pour afficher l'interface graphique de la borne.

Résultats

En réglant la camera a 640x480@30fps, aucune perte d'image n'est observée dans le retour vidéo dans
firefox.

Nous avons observé la capacité de Mediapipe l'image de la camera et de la communiquer a l'interface web
qui affiche le résultat. Nous avons obtenu les résultats suivants pour 2 modes de gestion de fréquence du
processeur (la gestions automatique de base schedutil et performance qui utillise la fréquence maximale)

CPU Scheduler FPS moyens Ecart type

schedutil 10.4 1.4

performance 10.1 0.9

Ce taux de rafraichissement est suffisant pour que 'application paraisse relativement réactive a
['utilisateur, bien que cela ne soit pas du temps réel.



rapport.md 1/26/2023

Pendant ce temps l'api de traitement des avis et la base de donnée fonctionnent correctement en affichant
une lattence de 8ms pour une récupération de la liste d'avis.

Pendance ce temps ['utilisation du processeur qui varie de 250% a 280% (sur 400% pour les 4 coeurs) et une
utilisation de la RAM de 50% (1.96Go) ce qui nous laisse de la marge en cas d'ajout imprévu.

Les processus utilisant le plus de CPU sont la reconaissance d'image (70%) et firefox pour afficher
l'interface de la borne (70-80%). En cas de besoin ces valeurs pourront étre diminuées au prix de la fluidité
du retour vidéo. Pour la RAM c'est le serveur mysql (10%) et firefox (10%) qui consomment le plus.

Pour ce qui est de la température, comme la borne sera dans un environement fermé, il était important de
tester le bon fonctionnement du materiel dans ces conditions. Nous avons laissé tourner ['application
pendant 2h dans une boite en carton fermée. Au début du test la température du processeur était de 50°C,
au bout de 2h la température était montée a 70°C, ce qui reste assez faible pour ne pas limiter les
performances du CPU.

$ sensors

acpitz-acpi-0

Adapter: ACPI interface
templ: +27.8°C (crit
temp2: +29.8°C (crit

+110.0°C)
+110.0°C)

coretemp-isa-0000
Adapter: ISA adapter

Package id 0: +69.0°C (high = +105.0°C, crit = +105.0°C)
Core 0: +69.0°C (high = +105.0°C, crit = +105.0°C)
Core 1: +68.0°C (high = +105.0°C, crit = +105.0°C)

Impact de 'utilisation de Docker

Nous nous sommes également posé la question de l'impact de ['utilisation de docker dans les performances
de notre projet. Pour mesurer cela, nous avons effectué des benchmark directement sur le systeme puis
dans un container Docker pour mesurer la différence. Nous avons utlisé sysbench pour évaluer les
performances du CPU, de la RAM et du disque (écriture/lecture aléatoire).

Le script permettant de faire le benchmark

syshench -- =cpu run >>sysbench.log

syshench -- =memory run >>sysbench.log

syshench -- =fileio --file-test-mode=rndrw prepare

sysbench -- =fileio --file-test-mode=rndrw run >>sysbench.log
syshench -- =fileio cleanup

Le Dockerfile du container dans lequel nous avons exectué le méme script

FROM alpine:latest
RUN apk add --no-cache sysbench



rapport.md 1/26/2023

WORKDIR /app
COPY benchmark_script.sh /app/benchmark_script.sh
CMD ["sh","benchmark_script.sh"]

Les résultats de ce test on permis de conclure que l'impact de docker était négligeable.

Impact de Docker sur les performances (valeurs
normalisées)

Disque (écriture aléatoire)
Disque (lecture aléatoire)

RAM (Transfer)

CPU

o

0,2 0,4 0,6 0,8

[y

m Docker ® Normal

Type CPU (Evts/s) RAM (Mbi/s) Disque lecture(Mbi/s) Disque écriture (Mbi/s)

Normal 613.14 3259.84 12.34 8.22
Docker 552.76 2794.21 12.27 8.18
Conclusion

Au vu des tests effectués le materiel dont nous disposons semble adapté a notre projet. Il est cependant
possible de réduire ['utilisation faite de 'ordinateur embarqué dans la borne en déplacant la partie
stockage et traitement des avis sur un autre serveur. Pour l'instant cette possibilité n'est cependant pas
envisagée par soucis de sécurité des données et car elle n'est pas nécessaire.

474



