import cv2 import mediapipe as mp import numpy as np import os from dotenv import load_dotenv load_dotenv() camera_id = int(os.getenv("CAMERA_ID")) mp_hands = mp.solutions.hands cap = cv2.VideoCapture(camera_id) def prodScalaire(V1,V2): return V1[0]*V2[0]+V1[1]*V2[1]/(np.sqrt(V1[0]**2+V1[1]**2)*np.sqrt(V2[0]**2+V2[1]**2)) class HandDetector(): def __init__(self): self.hands = mp_hands.Hands( model_complexity=0, min_detection_confidence=0.5, min_tracking_confidence=0.5) #Paramètres self.BUFFER_LENGTH = 200 self.DETECTION_THRESHOLD = 1/2 self.resultBuffer = [] def reset(self): self.resultBuffer = [] def analyse_pouce(self, handLandmarks): etatDuPouce = ["neutre","thumbs_down","thumbs_up"] i = 0 j = 0 for cpt in range (0,4): V1=[handLandmarks[(4*cpt)+5][0]-handLandmarks[(4*cpt)+0][0],handLandmarks[(4*cpt)+5][1]-handLandmarks[(4*cpt)+0][1]] V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+5][1]] j1=np.dot(V1,V2) V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]] V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]] j2=np.dot(V1,V2) if (j1>0 and j2>0): return etatDuPouce[0] V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]] V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]] if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])): i=1 elif(np.dot(V1,V2)>0 and handLandmarks[4][1] self.BUFFER_LENGTH): self.resultBuffer.pop(0) thumbsUpCount = sum(map(lambda x : x == "thumbs_up", self.resultBuffer)) thumbsDownCount = sum(map(lambda x : x == "thumbs_down", self.resultBuffer)) if(thumbsUpCount > self.DETECTION_THRESHOLD * self.BUFFER_LENGTH): result = "thumbs_up" elif(thumbsDownCount > self.DETECTION_THRESHOLD * self.BUFFER_LENGTH): result = "thumbs_down" else: result = False progress = 0 if thumbState == "thumbs_up": progress = thumbsUpCount / (self.BUFFER_LENGTH * self.DETECTION_THRESHOLD) elif thumbState == "thumbs_down": progress = thumbsDownCount / (self.BUFFER_LENGTH * self.DETECTION_THRESHOLD) if(thumbState != "neutre"): return thumbState, handLandmarks[9], np.linalg.norm(np.array(handLandmarks[9]) - np.array(handLandmarks[0])), result, progress return False class FingerCountDetector(): def __init__(self): self.BUFFER_LENGTH = 40 self.DETECTION_THRESHOLD = 1/2 self.hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5, min_tracking_confidence=0.5) self.buffer = [] def reset(self): self.buffer = [] def getResult(self): stats = [0] * 10 for grade in self.buffer: stats[grade-1] = stats[grade-1]+1 stats = [stat / self.BUFFER_LENGTH for stat in stats] print(stats) if max(stats) > self.DETECTION_THRESHOLD: return stats.index(max(stats)) + 1 def prodScalaire(self,V1,V2): return (V1[0]*V2[0]+V1[1]*V2[1])/((V1[0]**2+V1[1]**2)**(1/2)*(V2[0]**2+V2[1]**2)**(1/2)) #produit scalaire normalisé #Fait le prod scalaire entre deux vecteurs formées par les points d'index (id0,id1) et (id2,id3) dans la liste landmarks def prodScalaireDoigts(self,landmarks,id0,id1,id2,id3): V0= [landmarks[id0].x - landmarks[id1].x, landmarks[id0].y - landmarks[id1].y] V1= [landmarks[id2].x - landmarks[id3].x, landmarks[id2].y - landmarks[id3].y] return self.prodScalaire(V0,V1) # initialisation de la caméra #Donne le nombre de doigts levé pour un landmak de main donnée def analyseMain(self,hand_landmarks): finger_count = 0 pouce = self.prodScalaireDoigts(hand_landmarks,2,0,4,2) index = self.prodScalaireDoigts(hand_landmarks,8,6,6,0) majeur = self.prodScalaireDoigts(hand_landmarks,12,10,10,0) annulaire= self.prodScalaireDoigts(hand_landmarks,16,14,14,0) auriculaire = self.prodScalaireDoigts(hand_landmarks,20,18,18,0) if pouce > 0.905135675: finger_count += 1 if index > 0: finger_count += 1 if majeur > 0: finger_count += 1 if annulaire > 0: finger_count += 1 if auriculaire > 0: finger_count += 1 return finger_count def loop(self): if cap.isOpened(): # lecture de la vidéo ret, frame = cap.read() # conversion de l'image en RGB image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # détection des mains results = self.hands.process(image) if results.multi_hand_landmarks: # détection du nombre de doigts levés finger_count = 0 if len(results.multi_hand_landmarks) >0 : finger_count += self.analyseMain(results.multi_hand_landmarks[0].landmark) if len(results.multi_hand_landmarks) >1 : finger_count += self.analyseMain(results.multi_hand_landmarks[1].landmark) self.buffer.append(finger_count) if(len(self.buffer) > self.BUFFER_LENGTH): self.buffer.pop(0) return self.getResult() if __name__ == "__main__": h = FingerCountDetector() while(1): print(h.loop())