finished compare plot

This commit is contained in:
Quentin Roussel
2024-05-06 21:48:50 +02:00
parent 6f4c746fcd
commit a9a9777aef
3 changed files with 289 additions and 20 deletions

View File

@@ -1,18 +1,26 @@
import pandas as pd
import matplotlib.pyplot as plt
def distribution_of_differences(df, column_name):
def error(df, df_original, column_name):
diff = []
# Check if the column exists in the DataFrame
if column_name not in df.columns:
raise ValueError(f"The column '{column_name}' does not exist in the DataFrame.")
# Calculate differences between consecutive rows for the specified column
differences = df[column_name].diff().abs()
def last_value_before(timestamp):
if df[df['time'] <= timestamp].empty:
raise ValueError("No point before the date")
return df[df['time'] <= timestamp].iloc[-1]
for i in range(1, len(df_original)):
try:
diff.append(abs(df_original["value"].iloc[i] - last_value_before(df_original["time"].iloc[i])["value"]))
except ValueError:
continue
return diff
# The first element of differences will be NaN since there's no previous element for the first row
differences = differences.dropna() # Remove NaN values
return differences
def plot_histogram(data_series, bins=10, title="Distribution of Absolute Differences"):
plt.figure(figsize=(8, 4)) # Set the figure size for better readability
@@ -22,3 +30,40 @@ def plot_histogram(data_series, bins=10, title="Distribution of Absolute Differe
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
def compute_efficiency(df):
#compute the time differnece between the first and last point
time_diff = df["time"].iloc[-1] - df["time"].iloc[0]
#compute the number of points
num_points = len(df)
#compute the efficiency
efficiency = time_diff.total_seconds() / num_points
return efficiency
def hourly_rate_of_change(df):
# Check if required columns exist
if 'time' not in df.columns or 'value' not in df.columns:
raise ValueError("DataFrame must include 'time' and 'value' columns.")
# Check if the DataFrame is empty
if df.empty:
raise ValueError("The DataFrame is empty.")
# Ensure 'time' is of datetime type
if not pd.api.types.is_datetime64_any_dtype(df['time']):
raise ValueError("'time' column must be of datetime type.")
# Calculate the difference between consecutive entries
df['time_diff'] = df['time'].diff().dt.total_seconds() / 3600 # Convert time difference to hours
df['value_diff'] = df['value'].diff()
# Calculate the rate of change in degrees per hour, and take the absolute value
df['rate_of_change'] = (df['value_diff'] / df['time_diff']).abs()
# Extract the hour from each datetime
df['hour'] = df['time'].dt.hour
# Group by hour and calculate the average absolute rate of change for each hour
hourly_avg_abs_rate = df.groupby('hour')['rate_of_change'].mean()
return hourly_avg_abs_rate

203
main.py
View File

@@ -4,15 +4,18 @@ from generate_data import *
from analyze import *
from poll import *
# sort two lists based on the first list
def sort(X,Y):
return zip(*sorted(zip(X,Y)))
def plot_temperature_data(df, recent_count=None):
plt.figure(figsize=(10, 5))
plt.figure(figsize=(5, 5))
# Check if recent_count is specified and valid
if recent_count is not None and recent_count > 0:
df = df.tail(recent_count) # Slice the DataFrame to get the last 'recent_count' rows
plt.plot(df['time'], df['value'], label='Temperature', color='tab:red')
plt.title('Temperature Over Time')
plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
plt.xlabel('Time')
plt.ylabel('Temperature (°C)')
plt.grid(True)
@@ -21,16 +24,190 @@ def plot_temperature_data(df, recent_count=None):
plt.tight_layout() # Adjusts subplot params so that the subplot(s) fits in to the figure area.
plt.show()
# Load the data from the CSV file
df = generate_greenhouse_data("datasets/greenhouse.csv")
plot_temperature_data(df)
df2 = sample_every_kth_point(df,50)
def test_sample_every_kth_point(df):
X = np.arange(1, 10, 1)
MEAN = []
STD = []
MEDIAN = []
EFFICIENCY = []
for x in X:
print(x)
df_sampled = sample_every_kth_point(df, int(x))
# plot_temperature_data(df)
diff1 = distribution_of_differences(df, 'value')
diff2 = distribution_of_differences(df2, 'value')
diff = error(df_sampled, df, 'value')
diff1 = diff1[diff1 <= 10]
diff2 = diff2[diff2 <= 10]
MEAN.append(np.mean(diff))
STD.append(np.std(diff))
MEDIAN.append(np.median(diff))
EFFICIENCY.append(compute_efficiency(df_sampled))
plot_histogram(diff1,bins=20, title='Distribution of Absolute Differences (Original Data)')
plot_histogram(diff2, bins=20, title='Distribution of Absolute Differences (Sampled Data)')
return X, EFFICIENCY, MEAN, MEDIAN, STD
def example_sample_every_kth_point(k=10):
df = generate_greenhouse_data("datasets/greenhouse.csv")
df = df.tail(150)
df = sample_every_kth_point(df, k)
plot_temperature_data(df)
def example_sample_reglin():
df = generate_greenhouse_data("datasets/greenhouse.csv")
df = df.tail(150)
df = sample_reglin(df)
plot_temperature_data(df)
def exaample_optimal_sample(dT = 0.3):
df = generate_greenhouse_data("datasets/greenhouse.csv")
df = df.tail(150)
df = optimal_sample(df, threshold_dT=dT)
plot_temperature_data(df)
def example_sample_avg_rate_of_change():
df = generate_greenhouse_data("datasets/greenhouse.csv")
hroc = hourly_rate_of_change(df)
df = df.tail(150)
df = sample_avg_rate_of_change(df, 3600 * 1 / hroc)
plot_temperature_data(df)
def test_sample_reglin(df):
X = np.arange(0.4, 3, 0.05)
MEAN = []
STD = []
MEDIAN = []
EFFICIENCY = []
for x in X:
print(x)
df_sampled = sample_reglin(df, max_dT=x)
# plot_temperature_data(df)
diff = error(df_sampled, df, 'value')
MEAN.append(np.mean(diff))
STD.append(np.std(diff))
MEDIAN.append(np.median(diff))
EFFICIENCY.append(compute_efficiency(df_sampled))
return X, EFFICIENCY, MEAN, MEDIAN, STD
def test_optimal_sample(df):
X = np.arange(0.1, 3, 0.05)
MEAN = []
STD = []
MEDIAN = []
EFFICIENCY = []
for x in X:
print(x)
df_sampeld= optimal_sample(df, threshold_dT=x)
# plot_temperature_data(df)
diff = error(df_sampeld,df, 'value')
MEAN.append(np.mean(diff))
STD.append(np.std(diff))
MEDIAN.append(np.median(diff))
EFFICIENCY.append(compute_efficiency(df_sampeld))
return X, EFFICIENCY, MEAN, MEDIAN, STD
def test_sample_avg_rate_of_change(df,hourly_rate_of_change):
X = np.arange(0.01, 3, 0.05)
MEAN = []
STD = []
MEDIAN = []
EFFICIENCY = []
for x in X:
print(x)
df_sampled = sample_avg_rate_of_change(df, 3600 * x / hourly_rate_of_change)
# plot_temperature_data(df)
diff = error(df_sampled, df, 'value')
MEAN.append(np.mean(diff))
STD.append(np.std(diff))
MEDIAN.append(np.median(diff))
EFFICIENCY.append(compute_efficiency(df_sampled))
return X, EFFICIENCY, MEAN, MEDIAN, STD
def comparaison_mean(df,limit=1000):
plt.figure(figsize=(10, 5))
hroc = hourly_rate_of_change(df)
df = df.tail(limit)
X, EFFICIENCY, MEAN, MEDIAN, STD = test_sample_every_kth_point(df)
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
plt.plot( MEAN,EFFICIENCY, label="Constant Polling Interval", marker='x')
X, EFFICIENCY, MEAN, MEDIAN, STD = test_sample_reglin(df)
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
plt.plot( MEAN,EFFICIENCY, label="Linear Regression", marker='x')
X, EFFICIENCY, MEAN, MEDIAN, STD = test_optimal_sample(df)
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
plt.plot( MEAN,EFFICIENCY, label="Optimal Polling rate", marker='x')
X, EFFICIENCY, MEAN, MEDIAN, STD = test_sample_avg_rate_of_change(df,hroc)
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
plt.plot( MEAN,EFFICIENCY, label="Hourly Rate of Change", marker='x')
plt.ylabel("Average seconds between polls")
plt.xlabel("Average error")
plt.ylim(0, 8000)
plt.xlim(0,1.3)
plt.legend()
plt.show()
def example_optimal_sample(dT = 0.3):
df = generate_greenhouse_data("datasets/greenhouse.csv")
df = df.tail(1000)
df = optimal_sample(df, threshold_dT=dT)
plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
plt.title('Temperature Over Time')
plt.xlabel('Time')
plt.ylabel('Temperature (°C)')
plt.grid(True)
plt.legend()
plt.show()
def histogram_sample_every_kth_point(k=10):
df = generate_greenhouse_data("datasets/greenhouse.csv")
df = df.tail(1000)
df_sampled = sample_every_kth_point(df, k)
diff = error(df, df_sampled, 'value')
plot_histogram(diff)
# histogram_sample_every_kth_point(1)
# df = generate_greenhouse_data("datasets/greenhouse.csv")
# df = df.tail(1000)
#Comparaison of the mean error with simplex
# df = generate_simplex(interval=600, frequency=10)
# plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
# plt.show()
# comparaison_mean(df)
#Same thing with the greenhouse data
# df = generate_greenhouse_data("datasets/greenhouse.csv")
# df = df.tail(1000)
# plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
# plt.show()
# comparaison_mean(df)
# Temperature rate of change over the day
# df = generate_greenhouse_data("datasets/greenhouse.csv")
# hcor = hourly_rate_of_change(df)
# hcor.plot()
# plt.xlabel("Hour of the day")
# plt.ylabel("Average absolute rate of change (°C/hour)")
# plt.show()
# plt.ylabel("Aboslute rate of change of the temperature (°C/hour)")
# plt.xlabel("Hour of the day")
# plt.show()
df = generate_greenhouse_data("datasets/greenhouse.csv")
comparaison_mean(df, 1000)
# example_sample_every_kth_point(1)
# example_sample_every_kth_point(10)
# exaample_optimal_sample()
# example_sample_reglin()
# example_sample_avg_rate_of_change()
# Calculate differences between consecutive rows for the specified column

47
poll.py
View File

@@ -1,3 +1,6 @@
import datetime
from analyze import hourly_rate_of_change
def sample_every_kth_point(df, k):
# Validate the input to ensure k is positive and does not exceed the DataFrame length
if k <= 0:
@@ -8,3 +11,47 @@ def sample_every_kth_point(df, k):
# Sample every k-th point
sampled_df = df.iloc[::k]
return sampled_df
def optimal_sample(df, threshold_dT=0.5):
t0 = df["time"].iloc[0]
indices = [0]
times = [t0]
for i in range(1, len(df)):
dT = abs(df["value"].iloc[i] - df["value"].iloc[indices[-1]])
if dT > threshold_dT:
times.append(i)
indices.append(i)
return df.iloc[indices]
def sample_reglin(df,max_dT=0.5, max_poll_interval=2 * 3600):
indices = []
def get_first_point_after(date):
if(df[df['time'] > date].empty):
raise ValueError("No point before the date")
return df[df['time'] > date].iloc[0]
# Get first two points
t0 = df["time"].iloc[0]
t1 = df["time"].iloc[1]
while True:
v0 = df[df["time"] == t0]["value"].values[0]
v1 = df[df["time"] == t1]["value"].values[0]
# Calculate the slope
s = abs((v1 - v0) / (t1 - t0).total_seconds())
#add max_dT/s to t1
new_t = t1 + datetime.timedelta(seconds=min(max_dT/s, max_poll_interval))
try:
new_t = get_first_point_after(new_t)["time"]
indices.append(df[df["time"] == new_t].index[0])
t0 = t1
t1 = new_t
except ValueError:
break
return df.loc[indices]
def sample_avg_rate_of_change(df,poll_rate):
indices = [0]
for i in range(len(df)):
current_hour = df["time"].iloc[i].hour
if(df["time"].iloc[i] - df["time"].iloc[indices[-1]] > datetime.timedelta(seconds = poll_rate.iloc[current_hour])):
indices.append(i)
return df.iloc[indices]