Files
IOT-Adaptive-Polling/main.py
2024-05-06 21:48:50 +02:00

213 lines
6.6 KiB
Python

import pandas as pd
import matplotlib.pyplot as plt
from generate_data import *
from analyze import *
from poll import *
# sort two lists based on the first list
def sort(X,Y):
return zip(*sorted(zip(X,Y)))
def plot_temperature_data(df, recent_count=None):
plt.figure(figsize=(5, 5))
# Check if recent_count is specified and valid
if recent_count is not None and recent_count > 0:
df = df.tail(recent_count) # Slice the DataFrame to get the last 'recent_count' rows
plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
plt.xlabel('Time')
plt.ylabel('Temperature (°C)')
plt.grid(True)
plt.legend()
plt.xticks(rotation=45) # Rotates the x-axis labels to make them more readable
plt.tight_layout() # Adjusts subplot params so that the subplot(s) fits in to the figure area.
plt.show()
def test_sample_every_kth_point(df):
X = np.arange(1, 10, 1)
MEAN = []
STD = []
MEDIAN = []
EFFICIENCY = []
for x in X:
print(x)
df_sampled = sample_every_kth_point(df, int(x))
# plot_temperature_data(df)
diff = error(df_sampled, df, 'value')
MEAN.append(np.mean(diff))
STD.append(np.std(diff))
MEDIAN.append(np.median(diff))
EFFICIENCY.append(compute_efficiency(df_sampled))
return X, EFFICIENCY, MEAN, MEDIAN, STD
def example_sample_every_kth_point(k=10):
df = generate_greenhouse_data("datasets/greenhouse.csv")
df = df.tail(150)
df = sample_every_kth_point(df, k)
plot_temperature_data(df)
def example_sample_reglin():
df = generate_greenhouse_data("datasets/greenhouse.csv")
df = df.tail(150)
df = sample_reglin(df)
plot_temperature_data(df)
def exaample_optimal_sample(dT = 0.3):
df = generate_greenhouse_data("datasets/greenhouse.csv")
df = df.tail(150)
df = optimal_sample(df, threshold_dT=dT)
plot_temperature_data(df)
def example_sample_avg_rate_of_change():
df = generate_greenhouse_data("datasets/greenhouse.csv")
hroc = hourly_rate_of_change(df)
df = df.tail(150)
df = sample_avg_rate_of_change(df, 3600 * 1 / hroc)
plot_temperature_data(df)
def test_sample_reglin(df):
X = np.arange(0.4, 3, 0.05)
MEAN = []
STD = []
MEDIAN = []
EFFICIENCY = []
for x in X:
print(x)
df_sampled = sample_reglin(df, max_dT=x)
# plot_temperature_data(df)
diff = error(df_sampled, df, 'value')
MEAN.append(np.mean(diff))
STD.append(np.std(diff))
MEDIAN.append(np.median(diff))
EFFICIENCY.append(compute_efficiency(df_sampled))
return X, EFFICIENCY, MEAN, MEDIAN, STD
def test_optimal_sample(df):
X = np.arange(0.1, 3, 0.05)
MEAN = []
STD = []
MEDIAN = []
EFFICIENCY = []
for x in X:
print(x)
df_sampeld= optimal_sample(df, threshold_dT=x)
# plot_temperature_data(df)
diff = error(df_sampeld,df, 'value')
MEAN.append(np.mean(diff))
STD.append(np.std(diff))
MEDIAN.append(np.median(diff))
EFFICIENCY.append(compute_efficiency(df_sampeld))
return X, EFFICIENCY, MEAN, MEDIAN, STD
def test_sample_avg_rate_of_change(df,hourly_rate_of_change):
X = np.arange(0.01, 3, 0.05)
MEAN = []
STD = []
MEDIAN = []
EFFICIENCY = []
for x in X:
print(x)
df_sampled = sample_avg_rate_of_change(df, 3600 * x / hourly_rate_of_change)
# plot_temperature_data(df)
diff = error(df_sampled, df, 'value')
MEAN.append(np.mean(diff))
STD.append(np.std(diff))
MEDIAN.append(np.median(diff))
EFFICIENCY.append(compute_efficiency(df_sampled))
return X, EFFICIENCY, MEAN, MEDIAN, STD
def comparaison_mean(df,limit=1000):
plt.figure(figsize=(10, 5))
hroc = hourly_rate_of_change(df)
df = df.tail(limit)
X, EFFICIENCY, MEAN, MEDIAN, STD = test_sample_every_kth_point(df)
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
plt.plot( MEAN,EFFICIENCY, label="Constant Polling Interval", marker='x')
X, EFFICIENCY, MEAN, MEDIAN, STD = test_sample_reglin(df)
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
plt.plot( MEAN,EFFICIENCY, label="Linear Regression", marker='x')
X, EFFICIENCY, MEAN, MEDIAN, STD = test_optimal_sample(df)
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
plt.plot( MEAN,EFFICIENCY, label="Optimal Polling rate", marker='x')
X, EFFICIENCY, MEAN, MEDIAN, STD = test_sample_avg_rate_of_change(df,hroc)
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
plt.plot( MEAN,EFFICIENCY, label="Hourly Rate of Change", marker='x')
plt.ylabel("Average seconds between polls")
plt.xlabel("Average error")
plt.ylim(0, 8000)
plt.xlim(0,1.3)
plt.legend()
plt.show()
def example_optimal_sample(dT = 0.3):
df = generate_greenhouse_data("datasets/greenhouse.csv")
df = df.tail(1000)
df = optimal_sample(df, threshold_dT=dT)
plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
plt.title('Temperature Over Time')
plt.xlabel('Time')
plt.ylabel('Temperature (°C)')
plt.grid(True)
plt.legend()
plt.show()
def histogram_sample_every_kth_point(k=10):
df = generate_greenhouse_data("datasets/greenhouse.csv")
df = df.tail(1000)
df_sampled = sample_every_kth_point(df, k)
diff = error(df, df_sampled, 'value')
plot_histogram(diff)
# histogram_sample_every_kth_point(1)
# df = generate_greenhouse_data("datasets/greenhouse.csv")
# df = df.tail(1000)
#Comparaison of the mean error with simplex
# df = generate_simplex(interval=600, frequency=10)
# plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
# plt.show()
# comparaison_mean(df)
#Same thing with the greenhouse data
# df = generate_greenhouse_data("datasets/greenhouse.csv")
# df = df.tail(1000)
# plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
# plt.show()
# comparaison_mean(df)
# Temperature rate of change over the day
# df = generate_greenhouse_data("datasets/greenhouse.csv")
# hcor = hourly_rate_of_change(df)
# hcor.plot()
# plt.xlabel("Hour of the day")
# plt.ylabel("Average absolute rate of change (°C/hour)")
# plt.show()
# plt.ylabel("Aboslute rate of change of the temperature (°C/hour)")
# plt.xlabel("Hour of the day")
# plt.show()
df = generate_greenhouse_data("datasets/greenhouse.csv")
comparaison_mean(df, 1000)
# example_sample_every_kth_point(1)
# example_sample_every_kth_point(10)
# exaample_optimal_sample()
# example_sample_reglin()
# example_sample_avg_rate_of_change()
# Calculate differences between consecutive rows for the specified column