mirror of
https://git.roussel.pro/telecom-paris/GIN206.git
synced 2026-02-09 10:40:17 +01:00
213 lines
6.6 KiB
Python
213 lines
6.6 KiB
Python
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
from generate_data import *
|
|
from analyze import *
|
|
from poll import *
|
|
|
|
# sort two lists based on the first list
|
|
def sort(X,Y):
|
|
return zip(*sorted(zip(X,Y)))
|
|
|
|
def plot_temperature_data(df, recent_count=None):
|
|
plt.figure(figsize=(5, 5))
|
|
|
|
# Check if recent_count is specified and valid
|
|
if recent_count is not None and recent_count > 0:
|
|
df = df.tail(recent_count) # Slice the DataFrame to get the last 'recent_count' rows
|
|
|
|
plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
|
|
plt.xlabel('Time')
|
|
plt.ylabel('Temperature (°C)')
|
|
plt.grid(True)
|
|
plt.legend()
|
|
plt.xticks(rotation=45) # Rotates the x-axis labels to make them more readable
|
|
plt.tight_layout() # Adjusts subplot params so that the subplot(s) fits in to the figure area.
|
|
plt.show()
|
|
|
|
def test_sample_every_kth_point(df):
|
|
X = np.arange(1, 10, 1)
|
|
MEAN = []
|
|
STD = []
|
|
MEDIAN = []
|
|
EFFICIENCY = []
|
|
for x in X:
|
|
print(x)
|
|
df_sampled = sample_every_kth_point(df, int(x))
|
|
# plot_temperature_data(df)
|
|
|
|
diff = error(df_sampled, df, 'value')
|
|
|
|
MEAN.append(np.mean(diff))
|
|
STD.append(np.std(diff))
|
|
MEDIAN.append(np.median(diff))
|
|
EFFICIENCY.append(compute_efficiency(df_sampled))
|
|
|
|
return X, EFFICIENCY, MEAN, MEDIAN, STD
|
|
|
|
|
|
def example_sample_every_kth_point(k=10):
|
|
df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
df = df.tail(150)
|
|
df = sample_every_kth_point(df, k)
|
|
plot_temperature_data(df)
|
|
|
|
def example_sample_reglin():
|
|
df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
df = df.tail(150)
|
|
df = sample_reglin(df)
|
|
plot_temperature_data(df)
|
|
|
|
def exaample_optimal_sample(dT = 0.3):
|
|
df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
df = df.tail(150)
|
|
df = optimal_sample(df, threshold_dT=dT)
|
|
plot_temperature_data(df)
|
|
|
|
def example_sample_avg_rate_of_change():
|
|
df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
hroc = hourly_rate_of_change(df)
|
|
df = df.tail(150)
|
|
df = sample_avg_rate_of_change(df, 3600 * 1 / hroc)
|
|
plot_temperature_data(df)
|
|
|
|
def test_sample_reglin(df):
|
|
X = np.arange(0.4, 3, 0.05)
|
|
MEAN = []
|
|
STD = []
|
|
MEDIAN = []
|
|
EFFICIENCY = []
|
|
for x in X:
|
|
print(x)
|
|
df_sampled = sample_reglin(df, max_dT=x)
|
|
# plot_temperature_data(df)
|
|
|
|
diff = error(df_sampled, df, 'value')
|
|
|
|
MEAN.append(np.mean(diff))
|
|
STD.append(np.std(diff))
|
|
MEDIAN.append(np.median(diff))
|
|
EFFICIENCY.append(compute_efficiency(df_sampled))
|
|
return X, EFFICIENCY, MEAN, MEDIAN, STD
|
|
|
|
|
|
def test_optimal_sample(df):
|
|
X = np.arange(0.1, 3, 0.05)
|
|
MEAN = []
|
|
STD = []
|
|
MEDIAN = []
|
|
EFFICIENCY = []
|
|
for x in X:
|
|
print(x)
|
|
df_sampeld= optimal_sample(df, threshold_dT=x)
|
|
# plot_temperature_data(df)
|
|
|
|
diff = error(df_sampeld,df, 'value')
|
|
|
|
MEAN.append(np.mean(diff))
|
|
STD.append(np.std(diff))
|
|
MEDIAN.append(np.median(diff))
|
|
EFFICIENCY.append(compute_efficiency(df_sampeld))
|
|
return X, EFFICIENCY, MEAN, MEDIAN, STD
|
|
|
|
def test_sample_avg_rate_of_change(df,hourly_rate_of_change):
|
|
X = np.arange(0.01, 3, 0.05)
|
|
MEAN = []
|
|
STD = []
|
|
MEDIAN = []
|
|
EFFICIENCY = []
|
|
for x in X:
|
|
print(x)
|
|
df_sampled = sample_avg_rate_of_change(df, 3600 * x / hourly_rate_of_change)
|
|
# plot_temperature_data(df)
|
|
|
|
diff = error(df_sampled, df, 'value')
|
|
|
|
MEAN.append(np.mean(diff))
|
|
STD.append(np.std(diff))
|
|
MEDIAN.append(np.median(diff))
|
|
EFFICIENCY.append(compute_efficiency(df_sampled))
|
|
return X, EFFICIENCY, MEAN, MEDIAN, STD
|
|
|
|
def comparaison_mean(df,limit=1000):
|
|
plt.figure(figsize=(10, 5))
|
|
hroc = hourly_rate_of_change(df)
|
|
df = df.tail(limit)
|
|
X, EFFICIENCY, MEAN, MEDIAN, STD = test_sample_every_kth_point(df)
|
|
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
|
|
plt.plot( MEAN,EFFICIENCY, label="Constant Polling Interval", marker='x')
|
|
|
|
X, EFFICIENCY, MEAN, MEDIAN, STD = test_sample_reglin(df)
|
|
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
|
|
plt.plot( MEAN,EFFICIENCY, label="Linear Regression", marker='x')
|
|
|
|
X, EFFICIENCY, MEAN, MEDIAN, STD = test_optimal_sample(df)
|
|
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
|
|
plt.plot( MEAN,EFFICIENCY, label="Optimal Polling rate", marker='x')
|
|
|
|
X, EFFICIENCY, MEAN, MEDIAN, STD = test_sample_avg_rate_of_change(df,hroc)
|
|
MEAN, EFFICIENCY = sort(MEAN, EFFICIENCY)
|
|
plt.plot( MEAN,EFFICIENCY, label="Hourly Rate of Change", marker='x')
|
|
|
|
plt.ylabel("Average seconds between polls")
|
|
plt.xlabel("Average error")
|
|
plt.ylim(0, 8000)
|
|
plt.xlim(0,1.3)
|
|
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
def example_optimal_sample(dT = 0.3):
|
|
df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
df = df.tail(1000)
|
|
df = optimal_sample(df, threshold_dT=dT)
|
|
plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
|
|
plt.title('Temperature Over Time')
|
|
plt.xlabel('Time')
|
|
plt.ylabel('Temperature (°C)')
|
|
plt.grid(True)
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
def histogram_sample_every_kth_point(k=10):
|
|
df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
df = df.tail(1000)
|
|
df_sampled = sample_every_kth_point(df, k)
|
|
diff = error(df, df_sampled, 'value')
|
|
plot_histogram(diff)
|
|
|
|
# histogram_sample_every_kth_point(1)
|
|
# df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
# df = df.tail(1000)
|
|
|
|
#Comparaison of the mean error with simplex
|
|
# df = generate_simplex(interval=600, frequency=10)
|
|
# plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
|
|
# plt.show()
|
|
# comparaison_mean(df)
|
|
#Same thing with the greenhouse data
|
|
# df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
# df = df.tail(1000)
|
|
# plt.plot(df['time'], df['value'], label='Temperature', color='tab:red', marker='x')
|
|
# plt.show()
|
|
# comparaison_mean(df)
|
|
|
|
# Temperature rate of change over the day
|
|
# df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
# hcor = hourly_rate_of_change(df)
|
|
# hcor.plot()
|
|
# plt.xlabel("Hour of the day")
|
|
# plt.ylabel("Average absolute rate of change (°C/hour)")
|
|
# plt.show()
|
|
# plt.ylabel("Aboslute rate of change of the temperature (°C/hour)")
|
|
# plt.xlabel("Hour of the day")
|
|
# plt.show()
|
|
|
|
df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
comparaison_mean(df, 1000)
|
|
|
|
# example_sample_every_kth_point(1)
|
|
# example_sample_every_kth_point(10)
|
|
# exaample_optimal_sample()
|
|
# example_sample_reglin()
|
|
# example_sample_avg_rate_of_change()
|
|
# Calculate differences between consecutive rows for the specified column |