Files
IOT-Adaptive-Polling/analyze.py
2024-05-07 00:36:41 +02:00

123 lines
4.1 KiB
Python

import pandas as pd
import matplotlib.pyplot as plt
def error(df, df_original, column_name):
"""
Calculate the error between the values in a column of a DataFrame and the last value before each timestamp.
Args:
df (pandas.DataFrame): The DataFrame containing the values.
df_original (pandas.DataFrame): The original DataFrame containing the timestamps and values.
column_name (str): The name of the column to calculate the error for.
Returns:
list: A list of absolute differences between the values in the specified column and the last value before each timestamp.
Raises:
ValueError: If the specified column does not exist in the DataFrame.
"""
diff = []
# Check if the column exists in the DataFrame
if column_name not in df.columns:
raise ValueError(f"The column '{column_name}' does not exist in the DataFrame.")
def last_value_before(timestamp):
if df[df['time'] <= timestamp].empty:
raise ValueError("No point before the date")
return df[df['time'] <= timestamp].iloc[-1]
for i in range(1, len(df_original)):
try:
diff.append(abs(df_original["value"].iloc[i] - last_value_before(df_original["time"].iloc[i])["value"]))
except ValueError:
continue
return diff
def plot_histogram(data_series, bins=10, title="Distribution of Absolute Differences"):
"""
Plots a histogram of the given data series.
Parameters:
- data_series (array-like): The data series to plot the histogram for.
- bins (int): The number of bins to use for the histogram. Default is 10.
- title (str): The title of the histogram plot. Default is "Distribution of Absolute Differences".
Returns:
None
"""
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 4)) # Set the figure size for better readability
plt.hist(data_series, bins=bins, color='blue', alpha=0.7, edgecolor='black')
plt.title(title)
plt.xlabel('Absolute Difference')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
def compute_efficiency(df):
"""
Compute the efficiency of a data frame. i.e the time taken to collect each data point.
Parameters:
df (pandas.DataFrame): The input data frame.
Returns:
float: The efficiency value.
"""
# compute the time difference between the first and last point
time_diff = df["time"].iloc[-1] - df["time"].iloc[0]
# compute the number of points
num_points = len(df)
# compute the efficiency
efficiency = time_diff.total_seconds() / num_points
return efficiency
def hourly_rate_of_change(df):
"""
Calculate the average absolute rate of change per hour for a given DataFrame.
Args:
df (pandas.DataFrame): The DataFrame containing the data.
Returns:
pandas.Series: A Series containing the average absolute rate of change per hour.
Raises:
ValueError: If the DataFrame does not include 'time' and 'value' columns, or if it is empty.
ValueError: If the 'time' column is not of datetime type.
"""
# Check if required columns exist
if 'time' not in df.columns or 'value' not in df.columns:
raise ValueError("DataFrame must include 'time' and 'value' columns.")
# Check if the DataFrame is empty
if df.empty:
raise ValueError("The DataFrame is empty.")
# Ensure 'time' is of datetime type
if not pd.api.types.is_datetime64_any_dtype(df['time']):
raise ValueError("'time' column must be of datetime type.")
# Calculate the difference between consecutive entries
df['time_diff'] = df['time'].diff().dt.total_seconds() / 3600 # Convert time difference to hours
df['value_diff'] = df['value'].diff()
# Calculate the rate of change in degrees per hour, and take the absolute value
df['rate_of_change'] = (df['value_diff'] / df['time_diff']).abs()
# Extract the hour from each datetime
df['hour'] = df['time'].dt.hour
# Group by hour and calculate the average absolute rate of change for each hour
hourly_avg_abs_rate = df.groupby('hour')['rate_of_change'].mean()
return hourly_avg_abs_rate