mirror of
https://git.roussel.pro/telecom-paris/GIN206.git
synced 2026-02-09 02:30:17 +01:00
37 lines
1.3 KiB
Python
37 lines
1.3 KiB
Python
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
from generate_data import *
|
|
from analyze import *
|
|
from poll import *
|
|
|
|
def plot_temperature_data(df, recent_count=None):
|
|
plt.figure(figsize=(10, 5))
|
|
|
|
# Check if recent_count is specified and valid
|
|
if recent_count is not None and recent_count > 0:
|
|
df = df.tail(recent_count) # Slice the DataFrame to get the last 'recent_count' rows
|
|
|
|
plt.plot(df['time'], df['value'], label='Temperature', color='tab:red')
|
|
plt.title('Temperature Over Time')
|
|
plt.xlabel('Time')
|
|
plt.ylabel('Temperature (°C)')
|
|
plt.grid(True)
|
|
plt.legend()
|
|
plt.xticks(rotation=45) # Rotates the x-axis labels to make them more readable
|
|
plt.tight_layout() # Adjusts subplot params so that the subplot(s) fits in to the figure area.
|
|
plt.show()
|
|
|
|
# Load the data from the CSV file
|
|
df = generate_greenhouse_data("datasets/greenhouse.csv")
|
|
plot_temperature_data(df)
|
|
df2 = sample_every_kth_point(df,50)
|
|
|
|
diff1 = distribution_of_differences(df, 'value')
|
|
diff2 = distribution_of_differences(df2, 'value')
|
|
|
|
diff1 = diff1[diff1 <= 10]
|
|
diff2 = diff2[diff2 <= 10]
|
|
|
|
plot_histogram(diff1,bins=20, title='Distribution of Absolute Differences (Original Data)')
|
|
plot_histogram(diff2, bins=20, title='Distribution of Absolute Differences (Sampled Data)')
|