Files
Telereview/code/backend_reconnaissance/hand_detector.py
2023-05-04 00:23:59 +02:00

197 lines
8.0 KiB
Python

import cv2
import mediapipe as mp
import numpy as np
import os
from dotenv import load_dotenv
load_dotenv()
camera_id = int(os.getenv("CAMERA_ID"))
mp_hands = mp.solutions.hands
cap = cv2.VideoCapture(camera_id)
def prodScalaire(V1,V2):
return V1[0]*V2[0]+V1[1]*V2[1]/(np.sqrt(V1[0]**2+V1[1]**2)*np.sqrt(V2[0]**2+V2[1]**2))
class HandDetector():
def __init__(self):
self.hands = mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
#Paramètres
self.BUFFER_LENGTH = 200
self.DETECTION_THRESHOLD = 1/2
self.resultBuffer = []
def reset(self):
self.resultBuffer = []
def analyse_pouce(self, handLandmarks):
etatDuPouce = ["neutre","thumbs_down","thumbs_up"]
i = 0
j = 0
for cpt in range (0,4):
V1=[handLandmarks[(4*cpt)+5][0]-handLandmarks[(4*cpt)+0][0],handLandmarks[(4*cpt)+5][1]-handLandmarks[(4*cpt)+0][1]]
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+5][1]]
j1=np.dot(V1,V2)
V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]]
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]]
j2=np.dot(V1,V2)
if (j1>0 and j2>0):
return etatDuPouce[0]
V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]]
V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]]
if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])):
i=1
elif(np.dot(V1,V2)>0 and handLandmarks[4][1]<handLandmarks[2][1]):
i=2
return etatDuPouce[i]
def loop(self):
if cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
return False
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = self.hands.process(image)
if results.multi_hand_landmarks:
handsPositions = []
for hand_landmarks in results.multi_hand_landmarks:
handLandmarks = []
# Fill list with x and y positions of each landmark
for landmarks in hand_landmarks.landmark:
handLandmarks.append([landmarks.x, landmarks.y])
#On ajoute la position de chaque mains a une liste
handsPositions.append([self.analyse_pouce(handLandmarks), handLandmarks])
#On calcule le résultat suivant la position des deux mains
if(len(handsPositions) == 2):
if(handsPositions[0][0] == handsPositions[1][0]):
thumbState = handsPositions[0]
handLandmarks = handsPositions[0][1]
elif(handsPositions[0][0] == "neutre"):
thumbState = handsPositions[1]
handLandmarks = handsPositions[1][1]
elif(handsPositions[1][0] == "neutre"):
thumbState = handsPositions[0][0]
handLandmarks = handsPositions[0][1]
else:
thumbState = "neutre"
else:
thumbState = handsPositions[0][0]
handsLandmarks = handsPositions[0][1]
self.resultBuffer.append(thumbState)
if(len(self.resultBuffer) > self.BUFFER_LENGTH):
self.resultBuffer.pop(0)
thumbsUpCount = sum(map(lambda x : x == "thumbs_up", self.resultBuffer))
thumbsDownCount = sum(map(lambda x : x == "thumbs_down", self.resultBuffer))
if(thumbsUpCount > self.DETECTION_THRESHOLD * self.BUFFER_LENGTH):
result = "thumbs_up"
elif(thumbsDownCount > self.DETECTION_THRESHOLD * self.BUFFER_LENGTH):
result = "thumbs_down"
else:
result = False
progress = 0
if thumbState == "thumbs_up":
progress = thumbsUpCount / (self.BUFFER_LENGTH * self.DETECTION_THRESHOLD)
elif thumbState == "thumbs_down":
progress = thumbsDownCount / (self.BUFFER_LENGTH * self.DETECTION_THRESHOLD)
if(thumbState != "neutre"):
return thumbState, handLandmarks[9], np.linalg.norm(np.array(handLandmarks[9]) - np.array(handLandmarks[0])), result, progress
return False
class FingerCountDetector():
def __init__(self):
self.BUFFER_LENGTH = 20
self.DETECTION_THRESHOLD = 1/2
self.hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5, min_tracking_confidence=0.5)
self.buffer = []
def reset(self):
self.buffer = []
def getResult(self):
stats = [0] * 10
for grade in self.buffer:
stats[grade-1] = stats[grade-1]+1
stats = [stat / self.BUFFER_LENGTH for stat in stats]
print(stats)
if max(stats) > self.DETECTION_THRESHOLD:
return stats.index(max(stats)) + 1
def prodScalaire(self,V1,V2):
return (V1[0]*V2[0]+V1[1]*V2[1])/((V1[0]**2+V1[1]**2)**(1/2)*(V2[0]**2+V2[1]**2)**(1/2)) #produit scalaire normalisé
#Fait le prod scalaire entre deux vecteurs formées par les points d'index (id0,id1) et (id2,id3) dans la liste landmarks
def prodScalaireDoigts(self,landmarks,id0,id1,id2,id3):
V0= [landmarks[id0].x - landmarks[id1].x, landmarks[id0].y - landmarks[id1].y]
V1= [landmarks[id2].x - landmarks[id3].x, landmarks[id2].y - landmarks[id3].y]
return self.prodScalaire(V0,V1)
# initialisation de la caméra
#Donne le nombre de doigts levé pour un landmak de main donnée
def analyseMain(self,hand_landmarks):
finger_count = 0
pouce = self.prodScalaireDoigts(hand_landmarks,2,0,4,2)
index = self.prodScalaireDoigts(hand_landmarks,8,6,6,0)
majeur = self.prodScalaireDoigts(hand_landmarks,12,10,10,0)
annulaire= self.prodScalaireDoigts(hand_landmarks,16,14,14,0)
auriculaire = self.prodScalaireDoigts(hand_landmarks,20,18,18,0)
if pouce > 0.905135675:
finger_count += 1
if index > 0:
finger_count += 1
if majeur > 0:
finger_count += 1
if annulaire > 0:
finger_count += 1
if auriculaire > 0:
finger_count += 1
return finger_count
def loop(self):
if cap.isOpened():
# lecture de la vidéo
ret, frame = cap.read()
# conversion de l'image en RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# détection des mains
results = self.hands.process(image)
if results.multi_hand_landmarks:
# détection du nombre de doigts levés
finger_count = 0
if len(results.multi_hand_landmarks) >0 :
finger_count += self.analyseMain(results.multi_hand_landmarks[0].landmark)
if len(results.multi_hand_landmarks) >1 :
finger_count += self.analyseMain(results.multi_hand_landmarks[1].landmark)
self.buffer.append(finger_count)
if(len(self.buffer) > self.BUFFER_LENGTH):
self.buffer.pop(0)
return self.getResult()
if __name__ == "__main__":
h = FingerCountDetector()
while(1):
print(h.loop())