Files
Telereview/code/backend_reconnaissance/hand_detector.py
2023-03-28 12:18:36 +02:00

121 lines
4.2 KiB
Python

import cv2
import mediapipe as mp
import numpy as np
import os
from dotenv import load_dotenv
load_dotenv()
class HandDetector():
def __init__(self):
self.camera_id = int(os.getenv("CAMERA_ID"))
self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
self.mp_hands = mp.solutions.hands
self.cap = cv2.VideoCapture(self.camera_id)
self.hands = self.mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
#Paramètres
self.BUFFER_LENGTH = 60
self.DETECTION_THRESHOLD = 3/4
self.resultBuffer = []
def reset(self):
self.resultBuffer = []
def reconnaissancePouce(self,handLandmarks):
etatDuPouce=["neutre","thumbs_down","thumbs_up"]
i=0
j=0
for cpt in range (0,4):
V1=[handLandmarks[(4*cpt)+5][0]-handLandmarks[(4*cpt)+0][0],handLandmarks[(4*cpt)+5][1]-handLandmarks[(4*cpt)+0][1]]
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+5][1]]
j1=np.dot(V1,V2)
V1=[handLandmarks[(4*cpt)+6][0]-handLandmarks[(4*cpt)+5][0],handLandmarks[(4*cpt)+6][1]-handLandmarks[(4*cpt)+5][1]]
V2=[handLandmarks[(4*cpt)+8][0]-handLandmarks[(4*cpt)+6][0],handLandmarks[(4*cpt)+8][1]-handLandmarks[(4*cpt)+6][1]]
j2=np.dot(V1,V2)
if (j1>0 and j2>0):
return etatDuPouce[0]
V1=[handLandmarks[4][0]-handLandmarks[1][0],handLandmarks[4][1]-handLandmarks[1][1]]
V2=[handLandmarks[2][0]-handLandmarks[1][0],handLandmarks[2][1]-handLandmarks[1][1]]
if((np.dot(V1,V2))>0 and (handLandmarks[4][1]>handLandmarks[2][1])):
i=1
elif(np.dot(V1,V2)>0 and handLandmarks[4][1]<handLandmarks[2][1]):
i=2
return etatDuPouce[i]
def detect(self):
if self.cap.isOpened():
success, image = self.cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
return False
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = self.hands.process(image)
if results.multi_hand_landmarks:
handsPositions = []
for hand_landmarks in results.multi_hand_landmarks:
handLandmarks = []
# Fill list with x and y positions of each landmark
for landmarks in hand_landmarks.landmark:
handLandmarks.append([landmarks.x, landmarks.y])
#On ajoute la position de chaque mains a une liste
handsPositions.append([self.reconnaissancePouce(handLandmarks), handLandmarks])
#On calcule le résultat suivant la position des deux mains
if(len(handsPositions) == 2):
if(handsPositions[0][0] == handsPositions[1][0]):
thumbState = handsPositions[0]
handLandmarks = handsPositions[0][1]
elif(handsPositions[0][0] == "neutre"):
thumbState = handsPositions[1]
handLandmarks = handsPositions[1][1]
elif(handsPositions[1][0] == "neutre"):
thumbState = handsPositions[0][0]
handLandmarks = handsPositions[0][1]
else:
thumbState = "neutre"
else:
thumbState = handsPositions[0][0]
handsLandmarks = handsPositions[0][1]
self.resultBuffer.append(thumbState)
if(len(self.resultBuffer) > self.BUFFER_LENGTH):
self.resultBuffer.pop(0)
thumbsUpCount = sum(map(lambda x : x == "thumbs_up", self.resultBuffer))
thumbsDownCount = sum(map(lambda x : x == "thumbs_down", self.resultBuffer))
if(thumbsUpCount > self.DETECTION_THRESHOLD * self.BUFFER_LENGTH):
result = "thumbs_up"
elif(thumbsDownCount > self.DETECTION_THRESHOLD * self.BUFFER_LENGTH):
result = "thumbs_down"
else:
result = False
progress = 0
if thumbState == "thumbs_up":
progress = thumbsUpCount / (self.BUFFER_LENGTH * self.DETECTION_THRESHOLD)
elif thumbState == "thumbs_down":
progress = thumbsDownCount / (self.BUFFER_LENGTH * self.DETECTION_THRESHOLD)
if(thumbState != "neutre"):
return thumbState, handLandmarks[9], np.linalg.norm(np.array(handLandmarks[9]) - np.array(handLandmarks[0])), result, progress
return False
if __name__ == "__main__":
h = HandDetector()
while(1):
print(h.detect())